Augmenting cancer checkpoint immunotherapies via microbially-derived metabolites

通过微生物衍生的代谢物增强癌症检查点免疫疗法

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Immune checkpoint inhibitors (ICIs) have significantly improved long-term survival across diverse cancer types including melanoma, non-small cell lung cancer, triple negative breast cancer, and others. However, ICI efficacy relies on multiple cancer, host, and environmental variables, and only a small fraction of patients will respond to these antibody drugs. Methods to improve ICI responsiveness are therefore a highly desirable, unmet clinical need. Human-associated microbes are critical regulators of host health and disease including cancer treatment. Clinical studies have shown that specific gut bacterial species correlate with improved patient outcomes of ICI therapy, and colonization by these active microbes can directly elicit antitumor activity in preclinical animal models. These observations raise a fundamental question: what are the microbial mechanisms that dictate ICI efficacy? My previous work has demonstrated that a secreted bacterial peptidoglycan hydrolase is sufficient to broadly improve ICI therapy in murine models of cancer. Moreover, this phenotype could be recapitulated simply by coadministration of a synthetic fragment that mimics the product of the peptidoglycan hydrolase. These findings raise the exciting hypothesis that the production of microbial metabolites can directly improve ICI efficacy. The main objective of my proposal is to examine enzymatic mobilization of bacterial PG metabolites as a general mechanism of immune modulation during cancer ICI therapy. Aim 1 will explore host enzymes as new factors that determine ICI efficacy. Aim 2 will produce chemical probes to discover ICI-activating bacterial enzymes. Aim 3 will examine PG mobilization as a broad-spectrum strategy to potentiate ICI response in new indications and against new checkpoint targets. To accomplish these goals, I have built a broad and interdisciplinary skill set from my graduate work in chemical tool development with Dr. Linda Hsieh-Wilson at Caltech and my postdoctoral work in host-microbial communication and cancer immunology with Dr. Howard Hang at Scripps Research. To complement these strengths, I have established collaborations with leaders in the fields of cancer immunotherapy and host-microbial interactions to provide training in new cancer model systems and access to critical human-derived isolates, which will greatly aid in my efforts to establish the generality and human relevance of PG mobilization during ICI treatment. In addition, I have proposed a comprehensive career development plan to address any residual gaps in my abilities to effectively manage a laboratory, disseminate our findings, and obtain independent funding. The acquisition of these skills during the K22 period will fuel progress towards the completion of my proposal, providing key preliminary data needed for my first NCI R01 grant application. My scientific and career development enabled by the K22 award will help me to achieve my long-term career goal to become a successful independent investigator at the intersection of host-microbial communication and cancer immunotherapy. Moreover, these efforts may yield mechanistic insights and translational avenues to understand and augment differential ICI responses in the clinic.
项目概要/摘要 免疫检查点抑制剂 (ICIs) 显着改善了多种癌症类型的长期生存率 包括黑色素瘤、非小细胞肺癌、三阴性乳腺癌等。然而,ICI 疗效 依赖于多种癌症、宿主和环境变量,只有一小部分患者会对 这些抗体药物。因此,提高 ICI 反应性的方法是非常理想的、尚未满足的临床方法。 需要。与人类相关的微生物是宿主健康和疾病(包括癌症治疗)的关键调节因子。 临床研究表明,特定的肠道细菌种类与 ICI 患者预后的改善相关 这些活性微生物的治疗和定植可以直接在临床前动物中引发抗肿瘤活性 模型。这些观察结果提出了一个基本问题:决定 ICI 的微生物机制是什么? 功效?我之前的工作已经证明,分泌的细菌肽聚糖水解酶足以 广泛改善小鼠癌症模型中的 ICI 治疗。此外,这种表型可以简单地概括 通过共同施用模拟肽聚糖水解酶产物的合成片段。这些 研究结果提出了一个令人兴奋的假设:微生物代谢产物的产生可以直接改善 ICI 功效。我的建议的主要目的是检查细菌 PG 代谢物的酶促动员 癌症 ICI 治疗期间免疫调节的一般机制。目标 1 将探索新的宿主酶 决定 ICI 疗效的因素目标 2 将生产化学探针来发现 ICI 激活细菌 酶。目标 3 将研究 PG 动员作为一种广谱策略,以增强新的 ICI 反应 迹象并针对新的检查点目标。为了实现这些目标,我建立了一个广泛且 我与 Linda Hsieh-Wilson 博士一起从事化学工具开发的研究生工作中获得了跨学科技能 加州理工学院和我与霍华德博士一起从事宿主微生物通讯和癌症免疫学方面的博士后工作 挂在斯克里普斯研究中心。为了补充这些优势,我与以下领域的领导者建立了合作关系: 癌症免疫治疗和宿主-微生物相互作用领域,提供新癌症模型系统的培训 以及获得关键的人类来源的分离株,这将极大地帮助我努力建立普遍性和 ICI 治疗期间 PG 动员的人类相关性。另外,我还提出了一个全面的职业生涯 制定计划,以解决我有效管理实验室、传播能力方面的任何剩余差距 我们的研究结果,并获得独立的资助。在K22期间获得这些技能将有助于 完成我的提案的进展,为我的第一个 NCI R01 提供了所需的关键初步数据 拨款申请。 K22 奖促进了我的科学和职业发展,将帮助我实现我的目标 长期职业目标是成为宿主-微生物交叉点上成功的独立研究者 沟通和癌症免疫治疗。此外,这些努力可能会产生机械见解和 理解和增强临床中差异 ICI 反应的转化途径。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Everett Griffin其他文献

Matthew Everett Griffin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
  • 批准号:
    10751480
  • 财政年份:
    2024
  • 资助金额:
    $ 19.8万
  • 项目类别:
N6-methyladenosine (m6A) Interplays with RNA and DNA Damage to Regulate DNA Repair
N6-甲基腺苷 (m6A) 与 RNA 和 DNA 损伤相互作用以调节 DNA 修复
  • 批准号:
    10649063
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
Development of a rapid screening test for the detection of dihydroanatoxin-a
开发检测二氢虾毒素-a 的快速筛选试验
  • 批准号:
    10545266
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
Structure-based computational engineering of saCas9 PAM requirement
saCas9 PAM 要求的基于结构的计算工程
  • 批准号:
    10696610
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
  • 批准号:
    10819340
  • 财政年份:
    2023
  • 资助金额:
    $ 19.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了