Defining the Spatiotemporal Underpinnings of Neutrophil Recruitment, Microvascular Flow, and Oxygenation in Ischemic Stroke

定义缺血性中风中中性粒细胞募集、微血管血流和氧合的时空基础

基本信息

项目摘要

Project Summary: While mechanical thrombectomy has advanced the treatment of large vessel occlusion (LVO) stroke, over 50% of patients still suffer from significant disability or death. Ischemia/reperfusion injury (I/RI), the result of restoring blood flow to deeply ischemic tissue, accelerates recruitment of polymorphonuclear neutrophils (PMNs). PMNs exert poor outcomes in two ways. First, PMNs physically obstruct cerebral microvessels in the stroke bed despite macrovascular reperfusion – a condition known as microvascular ‘no-reflow’. Second, PMNs exert toxic effects regionally once recruited at postcapillary venules and extravasated into the infarcted brain. Accordingly, preclinical studies that block PMN recruitment have had success in reducing stroke burden and improving neurologic outcome. Unfortunately, these preclinical studies have not been successful in human trials. These translational roadblocks may be addressed by investigating the spatiotemporal determinants of PMN recruitment as it relates to the in vivo cerebrovasculature during stroke. Using a mouse stroke model to simulate the LVO population and novel histopathological and imaging techniques, my preliminary data have found that PMN recruitment throughout I/RI is non-uniform up to 72 hours after infarction. PMNs were also found to progress cortically to subcortically throughout I/RI over the course of 72 hours, with partial restriction to the cortical surface by administration of an antibody that blocks transendothelial migration (TEM). These results support the concept of stroke microenvironments – highly regionalized areas within an infarct where inflammation and impaired microcirculation interface with each other. I hypothesize that these stroke microenvironments within an infarct are due to feedback loops between 1) microvascular flow and oxygenation; and 2) PMN recruitment. To test this hypothesis, I will investigate two aims: 1) Defining and physiologically manipulating the stroke microenvironment 2) Determine how PMN infiltration and position regulates I/RI over time. I will test these aims using techniques of multimodal in vivo animal imaging, advanced microscopy, and targeted manipulation of both leukocyte biology and stroke physiology. These studies will ultimately be used to identify molecular similarities of PMNs in particularly toxic stroke microenvironments, facilitating the investigation and creation of novel leukocyte-based therapies. To complete these long-term goals, I will incorporate a multidisciplinary mentorship team and short-term goals of developing expertise in live-animal imaging, advanced microscopy, and leukocyte biology. With this K08 proposal, I will build a unique translational stroke program that defines the interplay of stroke physiology and pathology to develop more precise and translatable therapies for stroke patients.
项目摘要:机械取栓技术推进了大血管闭塞的治疗 (LVO) 中风,超过 50% 的患者仍遭受严重的残疾或死亡。 (I/RI) 是恢复深度缺血组织血流的结果,加速多形核的募集 中性粒细胞 (PMN) 通过两种方式产生不良结果:首先,PMN 会产生物理阻碍。 尽管存在大血管再灌注,但中风床上的脑微血管仍然存在——这种情况称为微血管 其次,PMN 一旦在毛细血管后微静脉中募集并外渗,就会产生局部毒性作用。 因此,阻止 PMN 募集的临床前研究已成功减少。 不幸的是,这些临床前研究尚未得到证实。 这些转化障碍可以通过研究时空来解决。 使用小鼠研究中风期间 PMN 募集的决定因素,因为它与体内脑血管系统有关。 模拟 LVO 群体的中风模型以及新颖的组织病理学和成像技术,我的初步研究 数据发现,在梗死后 72 小时内,整个 I/RI 中的 PMN 募集是不均匀的。 还发现在 72 小时的整个 I/RI 过程中,皮质向皮质下进展,但有部分限制 通过施用阻断跨内皮迁移(TEM)的抗体到达皮质表面。 结果支持中风微环境的概念——梗塞内高度区域化的区域,其中 炎症和微循环受损是相互影响的。 梗塞内的微环境是由于以下因素之间的反馈回路造成的:1) 微血管流动和氧合; 2) 为了检验这一假设,我将研究两个目标:1) 定义和生理学。 操纵中风微环境 2) 确定 PMN 浸润和位置如何调节 I/RI 我将使用多模式体内动物成像、先进显微镜和技术来测试这些目标。 这些研究最终将用于白细胞生物学和中风生理学的有针对性的操作。 识别特别有毒的中风微环境中 PMN 的分子相似性,促进研究 为了完成这些长期目标,我将纳入一个基于白细胞的新型疗法。 多学科指导团队和发展活体动物成像专业知识的短期目标,高级 通过这个 K08 提案,我将建立一个独特的转化中风计划。 定义中风生理学和病理学的相互作用,以开发更精确和可转化的治疗方法 中风患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Avadhoot Nadkarni其他文献

Neil Avadhoot Nadkarni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
  • 批准号:
    10637562
  • 财政年份:
    2023
  • 资助金额:
    $ 27.61万
  • 项目类别:
Center on Probes for Molecular Mechanotechnology
分子机械技术探针中心
  • 批准号:
    10629919
  • 财政年份:
    2023
  • 资助金额:
    $ 27.61万
  • 项目类别:
Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
  • 批准号:
    10736334
  • 财政年份:
    2023
  • 资助金额:
    $ 27.61万
  • 项目类别:
Uncovering the dual anabolic and anti-catabolic effects of Pyk2 inhibition on bone mass
揭示 Pyk2 抑制对骨量的双重合成代谢和抗分解代谢作用
  • 批准号:
    10688085
  • 财政年份:
    2022
  • 资助金额:
    $ 27.61万
  • 项目类别:
Transcriptomics of Pain in Sickle Cell Disease
镰状细胞病疼痛的转录组学
  • 批准号:
    10641957
  • 财政年份:
    2022
  • 资助金额:
    $ 27.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了