Chemogenetic Dissection of Neuronal and Astrocytic Compartment of the BOLD Signal
BOLD 信号神经元和星形细胞室的化学遗传学解剖
基本信息
- 批准号:9494695
- 负责人:
- 金额:$ 50.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-13 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAffectAnatomyAnimalsAstrocytesBindingBiologyBlood VesselsBrainBrain MappingBrain regionCell physiologyCellsCerebrovascular CirculationCerebrumChronicChronic PhaseComplexCyclic AMPDataData SetDiseaseDissectionEndotoxinsEnsureExclusionFoundationsFunctional Magnetic Resonance ImagingG Protein-Coupled Receptor SignalingG alpha q ProteinG-Protein-Coupled ReceptorsGenerationsGeneticHumanImaging DeviceImmunohistochemistryIon ChannelLightLinkLipopolysaccharidesMeasurementMediatingMental disordersMethodsModelingMolecularNeurodegenerative DisordersNeuronsOxygenPathologicPathway interactionsPharmacologyPhasePositioning AttributePredispositionProxyRoleScanningSignal PathwaySignal TransductionSolidSourceTechniquesTimeTransfectionastrogliosisbaseblood oxygen level dependentblood oxygenation level dependent responsebrain cellcerebral blood volumedesigner receptors exclusively activated by designer drugsexperienceexperimental studyhemodynamicsimprovedin vivometabolic ratemultimodalityneuroinflammationneurotransmissionneurovascular couplingnovelparacrinerecruitrelease factorresponsesomatosensorytool
项目摘要
PROJECT SUMMARY
Blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) is widely
used in to study human brain function; however the cellular and molecular mechanisms underlying the BOLD
signal remain poorly understood. The BOLD signal is highly complex as it represents disproportionate
interactions of cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen
(CMRO2) during neuronal activation. On the cellular level, while lactate generated from the astrocytes is used
to sustain neuronal activity, astrocytic signaling also releases vasoactive compounds, indicating that BOLD
could reflect a combined response of both neurons and astrocytes. Dissecting the fractional contribution of
neurons, astrocytes, their crosstalk, and specific molecular signaling cascades to BOLD, CBF, CBV,
and CMRO2 is crucial to more accurately model and interpret BOLD data.
Unlike neurons, astrocytes lack the appropriate ion channels to propagate action potentials but rather
mediate their activity predominantly through G-protein-coupled receptors (GPCRs). Substantial
pharmacological evidence has suggested that astrocytic GPCRs are key molecular players in their control of
CBF through their binding of various paracrine compounds released by neurons. Interestingly, some studies
have questioned this conclusion, demonstrating that activation of astrocytic Gq-GPCRs are not critical for CBF
modulation. Further, it remains unclear how other GPCR subfamilies (i.e., Gs and Gi) affect BOLD. These
controversies and missing data prompted us to systematically investigate the following questions for the first
time: 1) whether selective activation of astrocytic Gq-, Gs-, or Gi-GPCR signaling pathways modulate
hemodynamic or BOLD responses in vivo, 2) can neurons or astrocytes independently elicit hemodynamic and
BOLD responses without the involvement of the other, and 3) what molecular mechanisms contribute to the
BOLD signal disruption in disease states where astrogliosis and neuronal remodeling occur.
We will employ cutting-edge chemogenetic tools, a.k.a. Designer Receptors Exclusively Activated by
Designer Drugs (DREADDs), to selectively modulate Gq-, Gs- and Gi-signaling cascades in neurons and
astrocytes. We will also utilize multimodal fMRI tools that allow measurement of BOLD, CBV, CBF, and
CMRO2 changes in a single setting. Additionally, we will perform immunohistochemistry in all subjects, allowing
within-subject comparison of the number or ratio of activated/suppressed cells and the observed hemodynamic
responses. In Aim 1, we propose to use DREADDs to directly activate the signaling of each of the main
astrocytic GPCR subfamily during fMRI, allowing precise interrogation of the astrocytic signaling pathways that
contribute to changes in BOLD. In Aim 2a, we will employ a novel means to concomitantly suppress astrocytic
cyclic-adenosine-monophosphate-related activity using Gi-DREADD during neuronal activation. Conceptually,
this will “remove” the astrocytes during fMRI mapping of neuronal activation. In Aim 2b, we will silence
neurons using Gi-DREADD while exclusively activating Gq- and Gs-DREADDs in astrocytes. This will ensure
the exclusion of potential paracrine factors released from neurons that could directly modulate vascular tone. In
Aim 3, we will employ an endotoxin-induced model of chronic neuroinflammation using lipopolysaccharide
(LPS), thus creating well-characterized region and time-specific pathological profiles. We will scan these
animals identically as described in Aim 2, but under two stages of neuroinflammation: 1) the acute phase (3
days after LPS exposure) which consists of peak presence of astrogliosis with very minimal neuronal
remodeling, and 2) the chronic phase (90 days after LPS exposure) which consists of moderate to mild
astrogliosis with substantial neuronal remodeling. We anticipate that our results will reveal the respective roles
of neurons, astrocytes, and specific GPCR signaling cascades in the generation of BOLD. We also expect our
study to shed considerable light on the mechanisms by which the BOLD signal can be disrupted in disease
states involving neuroinflammation. Lastly, we will perform BOLD modeling with the unique datasets to be
generated in this study, with the ultimate hope of building a more solid foundation for human brain mapping.
项目概要
血氧水平依赖性功能磁共振成像(BOLD fMRI)得到广泛应用
用于研究人类大脑功能;然而,BOLD 背后的细胞和分子机制
信号仍然知之甚少,因为它代表不成比例。
脑血流量(CBF)、脑血容量(CBV)和脑氧代谢率的相互作用
(CMRO2) 在神经元激活过程中,在细胞水平上使用星形胶质细胞产生的乳酸。
为了维持神经元活动,星形胶质细胞信号传导也会释放血管活性化合物,表明 BOLD
可以反映神经元和星形胶质细胞的联合反应。
神经元、星形胶质细胞、它们的串扰以及与 BOLD、CBF、CBV、
CMRO2 对于更准确地建模和解释 BOLD 数据至关重要。
与神经元不同,星形胶质细胞缺乏适当的离子通道来传播动作电位,而是
主要通过 G 蛋白偶联受体 (GPCR) 介导其活性。
药理学证据表明星形胶质细胞 GPCR 是控制
CBF 通过与神经元释放的各种旁分泌化合物结合。
质疑这一结论,证明星形胶质细胞 Gq-GPCR 的激活对于 CBF 并不重要
此外,其他 GPCR 亚家族(即 Gs 和 Gi)如何影响 BOLD 仍不清楚。
争议和数据缺失促使我们首先系统地调查以下问题
时间:1) 星形胶质细胞 Gq-、Gs- 或 Gi-GPCR 信号通路的选择性激活是否会调节
体内血流动力学或 BOLD 反应,2)神经元或星形胶质细胞可以独立引发血流动力学和
无需他人参与的大胆反应,以及 3) 哪些分子机制有助于
在星形胶质细胞增生和神经元重塑发生的疾病状态下,大胆的信号中断。
我们将采用尖端的化学遗传学工具,即由以下人员独家激活的设计受体
设计药物 (DREADD),选择性调节神经元中的 Gq、Gs 和 Gi 信号级联
我们还将利用多模态 fMRI 工具来测量 BOLD、CBV、CBF 和
此外,我们将对所有受试者进行免疫组织化学分析,从而允许。
受试者内激活/抑制细胞的数量或比率以及观察到的血流动力学的比较
在目标 1 中,我们建议使用 DREADD 直接激活每个主节点的信令。
fMRI 期间的星形胶质细胞 GPCR 亚家族,允许精确询问星形胶质细胞信号通路
在目标 2a 中,我们将采用一种新颖的方法来同时抑制星形胶质细胞。
从概念上讲,在神经元激活过程中使用 Gi-DREADD 进行环腺苷一磷酸相关活动。
这将在神经激活的 fMRI 映射过程中“移除”星形胶质细胞。在目标 2b 中,我们将保持沉默。
使用 Gi-DREADD 的神经元同时专门激活星形胶质细胞中的 Gq- 和 Gs-DREADD,这将确保。
排除神经元释放的可直接调节血管张力的潜在旁分泌因子。
目标 3,我们将采用脂多糖建立内毒素诱导的慢性神经炎症模型
(LPS),从而创建特征明确的区域和特定时间的病理特征,我们将扫描这些。
与目标 2 中描述的相同的动物,但处于神经炎症的两个阶段:1) 急性期 (3
LPS 暴露后几天),其中包括星形胶质细胞增生的高峰期和极少的神经元
重塑,以及 2) 慢性期(LPS 暴露后 90 天),包括中度至轻度
我们预计我们的结果将揭示各自的作用。
我们还期望我们的神经元、星形胶质细胞和特定 GPCR 信号级联在 BOLD 的生成中发挥作用。
研究揭示了疾病中 BOLD 信号被破坏的机制
最后,我们将使用独特的数据集进行大胆建模。
这项研究产生的结果,最终希望为人类大脑绘图奠定更坚实的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yen-Yu Ian Shih其他文献
Mitochondriotropic lanthanide nanorods: implications for multimodal imaging
- DOI:
10.1039/d0cc02698k - 发表时间:
2020-05 - 期刊:
- 影响因子:4.9
- 作者:
Harwinder Singh;Sreejesh Sreedharan;Esteban Oyarzabal;Tufan Singha Mahapatra;Nicola Green;Yen-Yu Ian Shih;Manasmita Das;Jim. A. Thomas;Sumit Kumar Pramanik;Amitava Das - 通讯作者:
Amitava Das
Yen-Yu Ian Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yen-Yu Ian Shih', 18)}}的其他基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 50.44万 - 项目类别:
Deciphering neural origins of interhemispheric striatal resting-state functional connectivity using simultaneous chemogenetic fMRI and triple-spectral fiber photometry
使用同步化学遗传学功能磁共振成像和三光谱光纤光度测定破译半球间纹状体静息态功能连接的神经起源
- 批准号:
10727994 - 财政年份:2023
- 资助金额:
$ 50.44万 - 项目类别:
Mechanisms underlying positive and negative BOLD in the striatum
纹状体中正负 BOLD 的潜在机制
- 批准号:
9922502 - 财政年份:2019
- 资助金额:
$ 50.44万 - 项目类别:
Functional dissection of therapeutic deep brain stimulation circuitry
治疗性脑深部刺激电路的功能剖析
- 批准号:
9250225 - 财政年份:2015
- 资助金额:
$ 50.44万 - 项目类别:
相似国自然基金
巨噬细胞Nogo-B通过FABP4/IL-18/IL-18R调控急性肝衰竭的分子机制研究
- 批准号:82304503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于解郁散热“把好气分关”探讨代谢-炎症“开关”A2BR在急性胰腺炎既病防变中的作用与机制
- 批准号:82374256
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RacGAP1介导细胞核-线粒体对话在急性肾损伤中促进肾小管上皮细胞能量平衡的作用机制研究
- 批准号:82300771
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开窍寒温配伍调控应激颗粒铁离子富集水平抗急性缺血性卒中铁死亡损伤的机制研究
- 批准号:82374209
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 50.44万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 50.44万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 50.44万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 50.44万 - 项目类别: