Repair of Vascular Contractility and Mitochondrial Function by NOS Recoupling

NOS 重新偶联修复血管收缩力和线粒体功能

基本信息

项目摘要

Diabetes (DM) is prevalent in the Veteran community, and there is an excess risk of cardiovascular disease (CVD) in those suffering from this disease. Early signs of CVD pathology include disruptions in vascular cells, making the vasculature a prime target for novel therapeutics. Hormesis, or the ability of cells to adapt and self- regulate when exposed to stress, is disrupted in the vasculature of those with DM. A central lynchpin of homeostasis modulation is the enzyme nitric oxide synthase (NOS). NOS regulates vascular contractility through the production of nitric oxide (NO) and also modulates mitochondrial function. We have shown that the impaired vascular function in animal models of DM is correlated to NOS dysfunction and altered mitochondrial substrate metabolism, function, and dynamics. It is unknown whether restoration of mitochondrial substrate metabolism would repair NOS activity, cellular and mitochondrial function, redox processes, and/or vascular function in those with DM. We hypothesize that disrupted cellular homeostasis intrinsic to the DM vasculature can be restored by reestablishing physiological NOS regulation and mitochondrial fuel metabolism. Many bioactive plant compounds are a platform for commonly used pharmaceuticals and have myriad physiological effects. The flavonoid compound -(-) epicatechin has been shown to induce vasodilation through the direct modulation of NOS; in previous studies, this compound also attenuated excess ROS and improved mitochondrial function. To test our hypothesis, we will treat animal models of DM with the plant compound -(-) epicatechin and measure NOS activity, mitochondrial function and substrate utilization, and vascular contractility. In vitro experiments in endothelial cells treated with -(-) epicatechin will determine the upstream cellular regulation of our functional endpoints. Secondly, we will test the cellular regulation of antioxidant defense in endothelial cells treated with -(-) epicatechin and ascertain any effects on cellular signaling pathways. Ultimately, we will investigate whether the cells' innate homeostatic regulation will be restored by repairing NOS activity with this plant compound. As this natural product is available in food and as a supplement, it may be a candidate for immediate therapeutic use for Veterans suffering from DM and CVD.
糖尿病 (DM) 在退伍军人群体中普遍存在,并且患心血管疾病的风险过高 (CVD)患有这种疾病的人。 CVD 病理学的早期迹象包括血管细胞破坏、 使脉管系统成为新型疗法的主要目标。毒物兴奋效应,或细胞适应和自我调节的能力 糖尿病患者的脉管系统在面临压力时的调节会受到干扰。的一个核心关键 稳态调节是一氧化氮合酶(NOS)。 NOS 调节血管收缩力 通过产生一氧化氮(NO)并调节线粒体功能。我们已经证明 DM 动物模型中血管功能受损与 NOS 功能障碍相关并发生改变 线粒体底物代谢、功能和动力学。是否恢复尚不清楚 线粒体底物代谢将修复 NOS 活性、细胞和线粒体功能、氧化还原 DM 患者的过程和/或血管功能。我们假设破坏了细胞稳态 DM 脉管系统固有的功能可以通过重建生理 NOS 调节来恢复 线粒体燃料代谢。许多生物活性植物化合物是常用的平台 药物并具有多种生理作用。黄酮类化合物-(-)表儿茶素已被 显示可通过直接调节 NOS 诱导血管舒张;在之前的研究中,该化合物还 减少过量的 ROS 并改善线粒体功能。为了检验我们的假设,我们将治疗动物 使用植物化合物 -(-) 表儿茶素建立 DM 模型,并测量 NOS 活性、线粒体功能和 底物利用率和血管收缩力。用-(-)处理的内皮细胞的体外实验 表儿茶素将决定我们功能终点的上游细胞调节。其次,我们将测试 用-(-)表儿茶素处理的内皮细胞抗氧化防御的细胞调节,并确定任何 对细胞信号通路的影响。最终,我们将研究细胞的先天稳态是否 通过使用这种植物化合物修复 NOS 活性,可以恢复调节。由于这种天然产品是 可用于食品和补充剂,它可能是退伍军人立即治疗用途的候选者 患有DM和CVD。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amy Celeste Keller其他文献

Amy Celeste Keller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amy Celeste Keller', 18)}}的其他基金

Delineating Mechanisms of Impaired Vasoreactivity in Thermoneutrality
描述热中性血管反应性受损的机制
  • 批准号:
    10701111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Repair of Vascular Contractility and Mitochondrial Function by NOS Recoupling
NOS 重新偶联修复血管收缩力和线粒体功能
  • 批准号:
    10593038
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Repair of Vascular Contractility and Mitochondrial Function by NOS Recoupling
NOS 重新偶联修复血管收缩力和线粒体功能
  • 批准号:
    10266011
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Antidiabetic Constituents from the Dominican Medicinal Plant Momordica charantia
多米尼加药用植物苦瓜的抗糖尿病成分
  • 批准号:
    7409263
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
Antidiabetic Constituents from the Dominican Medicinal Plant Momordica charantia
多米尼加药用植物苦瓜的抗糖尿病成分
  • 批准号:
    7575803
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Optogenetic and chemogenetic regulation of uterine vascular function
子宫血管功能的光遗传学和化学遗传学调控
  • 批准号:
    10785667
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Peptibodies As Novel Therapies in Atrial Fibrillation
肽体作为心房颤动的新疗法
  • 批准号:
    10598711
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
  • 批准号:
    10646631
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Role of CIC-6 in Vascular Control of Blood Pressure
CIC-6 在血管血压控制中的作用
  • 批准号:
    10877390
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural mechanisms of ASH1L in autism spectrum disorder
ASH1L 在自闭症谱系障碍中的神经机制
  • 批准号:
    10725205
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了