Clinical implementation of single cell tumor transcriptome analysis
单细胞肿瘤转录组分析的临床实施
基本信息
- 批准号:9272844
- 负责人:
- 金额:$ 43.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-12 至 2019-04-30
- 项目状态:已结题
- 来源:
- 关键词:Alpha CellArchivesAreaAssesBiologicalBiopsyBiopsy SpecimenCell ExtractsCellsCharacteristicsClinicalClinical OncologyClinical ResearchClinical TrialsCommunity Clinical Oncology ProgramComputational BiologyComputer AnalysisComputing MethodologiesCore BiopsyDNADNA Sequence AlterationDataData SetDevelopmentDiagnosisDrug ExposureDrug TargetingDrug effect disorderDrug resistanceEmpiricismEpigenetic ProcessEvolutionExcisionFine needle aspiration biopsyFine-needle biopsyGene ExpressionGene TargetingGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsHeterogeneityImmuneImmunotherapyIndividualInvestigationKnowledgeLesionLymphocytic InfiltrateMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of ovaryMassive Parallel SequencingMeasurementMeasuresMediatingMelanoma CellMethodsMolecularMolecular ProfilingMutationOperative Surgical ProceduresPathway interactionsPatientsPharmaceutical PreparationsPharmacodynamicsPopulationProceduresPropertyProtocols documentationQuality ControlRNARegimenRelapseResearchSamplingSeriesSpecimenStandardizationT-LymphocyteTechnologyTherapeuticTissuesTranscriptTumor TissueTumor-DerivedValidationanti-cancer therapeuticbasebench to bedsidecancer genomecancer therapycell typecostdesigneffusionexhaustexomegenomic profilesimprovedinsightlymphoid neoplasmmalignant breast neoplasmmelanomaneoplastic cellnew technologynon-geneticoncologypatient stratificationprecision medicineprecision oncologypublic health relevanceresistance mechanismresponsesingle cell analysisstemnesstooltranscriptometranscriptome sequencingtreatment responsetreatment strategytumortumor heterogeneitytumor microenvironment
项目摘要
DESCRIPTION (provided by applicant): The rapid evolution of cancer genome technology and computational analysis has engendered many fundamental cancer discoveries, thus transforming the scientific and clinical landscape in less than a decade. Increasingly, genetic alterations revealed by tumor genomic profiling guide diagnosis, treatment, and investigation in cancer. Despite these advances, many genomic technologies are unable to demonstrate drug targets or tumor-mediated drug resistance mechanisms that are not DNA-encoded. Furthermore, profiling approaches of bulk tumor samples only provide average signatures that do not reflect different tumor components and intrinsic heterogeneity of individual cell populations or cells. Emerging single-cell profiling technologies such as single-cell transcriptome analysis could overcome several challenges and provide a plethora of translational discovery opportunities. We recently provided proof- of-concept for application of single-cell RNA-seq in patient-derived tumor samples. To apply this technology more broadly in the translational oncology arena, we propose to create, optimize and implement a single-cell RNA-seq platform that can be deployed as a translational tool in the clinical oncology arena. In preliminary studies, we sequenced ~300 single cells from several melanoma tumors, including cancer and corresponding tumor-infiltrating cells (TILs). Transcriptome analysis revealed expression of key markers of melanoma, such as MITF and SOX10, and a stem-ness signature occurring in a fraction of melanoma cells. T cells expression reflected a spectrum of functional states, ranging from naïve to highly anergic (`exhausted') cells. These preliminary results demonstrate that we have created each necessary component for an end-to-end (clinic-to- bench) workflow, which yields meaningful single-cell data. The goal of this research is to optimize current protocols to create standard operating procedures (SOPs) and merge individual components into a standardized workflow. From our clinical colleagues, we will receive clinical specimens (tumors, biopsies, malignant effusions) from diverse tumor types, including melanoma, lung, breast and ovarian cancer. We will deploy experimental protocols to extract disaggregated individual cells from each sample type and state-of-the-art single cell RNA-Seq to profile each cell. Existing computational pipelines will be optimized to best serve high-throughput single-cell analysis, and once standardized will be made publicly available via an existing online platform. Upon completion of this project, we expect to have created a robust, multi-component workflow for single-cell transcriptome analysis applicable across cancer and sample types, and to render this technology accessible to the entire oncology community.
描述(由申请人提供):癌症基因组技术和计算分析的快速发展带来了许多基本的癌症发现,从而在不到十年的时间里改变了科学和临床格局,肿瘤基因组分析揭示的基因改变越来越多地指导诊断和治疗。尽管取得了这些进展,许多基因组技术仍无法证明非 DNA 编码的药物靶点或肿瘤介导的耐药机制,此外,大量肿瘤样本的分析方法只能提供可以做到的平均特征。不能反映不同的肿瘤成分和单个细胞群或细胞的内在异质性新兴的单细胞分析技术(例如单细胞转录组分析)可以克服一些挑战并提供大量的转化发现机会。单细胞RNA-seq在患者来源的肿瘤样本中的应用为了更广泛地在转化肿瘤学领域应用该技术,我们建议创建、优化和实施可部署为转化的单细胞RNA-seq平台。在初步研究中,我们对来自几种黑色素瘤的约 300 个单细胞进行了测序,包括癌症和相应的肿瘤浸润细胞 (TIL),转录组分析揭示了黑色素瘤关键标志物的表达,例如 MITF 和 SOX10。部分黑色素瘤细胞表达中出现的干性特征反映了一系列功能状态,从幼稚细胞到高度无活性(“疲惫”)细胞。证明我们已经为端到端(诊所到工作台)工作流程创建了每个必要的组件,从而产生有意义的单细胞数据。这项研究的目标是优化当前协议以创建标准操作程序(SOP)。并将各个组件合并到标准化工作流程中,我们将从不同肿瘤类型(包括黑色素瘤、肺癌、乳腺癌和卵巢癌)接收临床标本(肿瘤、活检、恶性渗出物)。来自每种样本类型的分解的单个细胞和用于分析每个细胞的最先进的单细胞RNA-Seq将优化现有的计算管道,以最好地服务于高通量单细胞分析,并且一旦标准化将公开。通过现有的在线平台。该项目完成后,我们希望创建一个强大的、多组件的单细胞转录组分析工作流程,适用于癌症和样本类型,并使整个肿瘤学界都能使用该技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE E. JOHNSON其他文献
BRUCE E. JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE E. JOHNSON', 18)}}的其他基金
The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
- 批准号:
9791162 - 财政年份:2018
- 资助金额:
$ 43.83万 - 项目类别:
The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
- 批准号:
10259732 - 财政年份:2018
- 资助金额:
$ 43.83万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
6906935 - 财政年份:2005
- 资助金额:
$ 43.83万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
7216360 - 财政年份:2005
- 资助金额:
$ 43.83万 - 项目类别:
EGFR Mutations in Non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
8852562 - 财政年份:2005
- 资助金额:
$ 43.83万 - 项目类别:
EGFR Mutations in Non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
8373478 - 财政年份:2005
- 资助金额:
$ 43.83万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
7384449 - 财政年份:2005
- 资助金额:
$ 43.83万 - 项目类别:
相似国自然基金
科学基金档案资料信息化管理探索与实践研究
- 批准号:
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
零信任架构下的电子健康档案动态共享研究
- 批准号:72274077
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
胶州湾河口湿地盾纤亚纲纤毛虫的多样性研究与档案资料建立
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医联体内电子健康档案应用绩效提升研究:影响因素、动力系统与治理机制
- 批准号:72164037
- 批准年份:2021
- 资助金额:28 万元
- 项目类别:地区科学基金项目
基于基金项目全生命周期的档案规范化管理探索与实践研究
- 批准号:52142301
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Delineation of the immunobiology of sarcoidosis and characterization of the effects of Janus kinase inhibition
结节病免疫生物学的描述和 Janus 激酶抑制作用的表征
- 批准号:
10190275 - 财政年份:2021
- 资助金额:
$ 43.83万 - 项目类别:
Delineation of the immunobiology of sarcoidosis and characterization of the effects of Janus kinase inhibition
结节病免疫生物学的描述和 Janus 激酶抑制作用的表征
- 批准号:
10393663 - 财政年份:2021
- 资助金额:
$ 43.83万 - 项目类别:
South Texas Alzheimer's Disease Center Neuropathology Core
南德克萨斯阿尔茨海默病中心神经病理学核心
- 批准号:
10472674 - 财政年份:2021
- 资助金额:
$ 43.83万 - 项目类别: