Virtual Histology for Assessing MS Pathologies
用于评估多发性硬化症病理学的虚拟组织学
基本信息
- 批准号:10308715
- 负责人:
- 金额:$ 45.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAreaAutopsyAxonBiological MarkersBrainCellularityClinicalContrast MediaCoupledDataDemyelinating DiseasesDemyelinationsDiffuseDiffusionDiffusion Magnetic Resonance ImagingDisease ProgressionEdemaElectrophysiology (science)Experimental Autoimmune EncephalomyelitisExperimental DesignsFast BlueFiberGadolinium DTPAGadopentetate DimeglumineGermanyGlucoseHistologicHistologyHumanImageImmunohistochemistryInflammationInflammatoryInjuryMagnetic Resonance ImagingMasksMeasurementMinorModelingMorphologyMultiple SclerosisMusMyelinNerveNeurologicOptic NervePathologyPerfusionPeriodic acid Schiff stain methodPersonsRanaReportingRinger&aposs solutionSamplingSensitivity and SpecificitySignal TransductionSilverSpecificitySpecimenSpinal cord injuryStainsStructureTemperatureTherapeutic InterventionThinnessTimeTissuesTolonium chlorideTranslatingTreatment EfficacyUncertaintyValidationWaterWorkaxon injurybasecentral nervous system demyelinating disordercentral nervous system injurycode developmentcohortdata-driven modeldeep learning algorithmdeep neural networkdensitydisabilityimaging approachimprovedin vivomanganese chlorideneurotransmissionnovelpreservationpreventprogramsremyelinationsciatic nervesevere injuryspectrographsupport vector machinevasogenic edemavirtualwhite matter
项目摘要
PROJECT SUMMARY
Multiple sclerosis (MS) is an inflammatory demyelinating disease with, ultimately, irreversible axonal injury
leading to permanent neurological disabilities. Preventing disease progression or treating progressive MS
remains a major unmet clinical need. We have previously developed a novel data-driven model-selection
diffusion basis spectrum imaging (DBSI) to accurately image inflammation, demyelination, and axonal injury,
as well as quantifying axonal loss in the presence of vasogenic edema in experimental autoimmune
encephalomyelitis (EAE) and spinal cord injury mice, and brain WM pathologies in MS.
MRI does not distinguish inter- from intra-axonal water signals, reflecting a weighted-average of signals
between the two compartments. However, our recent observation that DBSI derived axial diffusivity (DBSI-λǁ)
was slightly elevated in normal appearing white matter (NAWM) in people with MS (pwMS). This elevated
DBSI-λǁ added uncertainty in assessing whether axonal injury (against the notion that ↓DBSI-λǁ ≈ axonal injury)
is present in NAWM of these pwMS. In this proposed study, we will refine DBSI to further improve its sensitivity
and specificity to axonal injury/loss, demyelination, and inflammation for accurately assessing disease
progression and therapeutic efficacy in pwMS.
Since MRI does not distinguish inter- from intra-axonal water signals, it reflects a weighted-average between
inter- and intra-axonal signals. In the presence of inflammation-associated edema or minor axonal loss in
pwMS, the longer diffusion time for human scanners coupled with the increased inter-axonal space will lead to
increased DBSI-λǁ masking the detectability of axonal injury. Thus, through separating inter- and intra-axonal
water compartment signals, the sensitivity and specificity to axonal injury of DBSI-derived intra-axonal λ||
(DBSI-IA-λ||) may be improved. This new model will still preserve the isotropic diffusion specificity to
inflammation and tissue loss.
We propose three specific aims to prove or disprove this hypothesis: Aim 1. To perform DBSI and DBSI-IA
analyses on autopsy specimens from pwMS followed by conventional histology and immunohistochemical
staining. Aim 2. To perform DBSI and DBSI-IA modeling on perfused frog sciatic nerve with and without
contrast agent to separate inter-/intra-axonal space water signal. Aim 3a. To develop a Diffusion Histology
Imaging (DHI) approach combining DBSI/DBSI-IA metrics and machine/deep learning algorithms to
recapitulate histology specificity to MS pathology. Aim 3b. To translate DBSI-IA model to analyze existing DWI
data from the cohort of pwMS previously imaged in an expired program project.
项目概要
多发性硬化症 (MS) 是一种炎症性脱髓鞘疾病,最终会导致不可逆的轴突损伤
导致永久性神经功能障碍或治疗进行性多发性硬化症。
仍然是一个未满足的主要临床需求。我们之前开发了一种新颖的数据驱动模型选择。
扩散基础能谱成像 (DBSI) 可准确成像炎症、脱髓鞘和轴突损伤,
以及量化实验性自身免疫中血管源性水肿存在下的轴突损失
脑脊髓炎 (EAE) 和脊髓损伤小鼠,以及 MS 中的脑部 WM 病理。
MRI 不区分轴突间和轴突内水信号,反映的是信号的加权平均值
然而,我们最近观察到 DBSI 得出的轴向扩散率 (DBSI-λǁ)
MS (pwMS) 患者的正常白质 (NAWM) 略有升高。
DBSI-λǁ 增加了评估轴突损伤是否存在的不确定性(反对 ↓DBSI-λǁ ≈ 轴突损伤的观点)
存在于这些 pwMS 的 NAWM 中。在这项拟议的研究中,我们将改进 DBSI 以进一步提高其灵敏度。
以及对轴突损伤/损失、脱髓鞘和炎症的特异性,以准确评估疾病
pwMS 的进展和治疗效果。
由于 MRI 不能区分轴突间和轴突内水信号,因此它反映了轴突间和轴突内水信号的加权平均值。
存在炎症相关水肿或轻微轴突丢失的情况下。
pwMS,人体扫描仪的较长扩散时间加上轴突间空间的增加将导致
增加的 DBSI-λǁ 掩盖了轴突损伤的可检测性,因此,通过分离轴突间和轴突内。
水室信号,DBSI 衍生的轴突内 λ|| 对轴突损伤的敏感性和特异性
(DBSI-IA-λ||) 可能会得到改进,这个新模型仍将保留各向同性扩散特异性。
炎症和组织损失。
我们提出三个具体目标来证明或反驳这一假设: 目标 1. 执行 DBSI 和 DBSI-IA
对 pwMS 尸检标本进行分析,然后进行常规组织学和免疫组织化学分析
目的 2. 对有或没有灌注的青蛙坐骨神经进行 DBSI 和 DBSI-IA 建模。
分离轴突间/轴内空间水信号的造影剂 目标 3a。
成像 (DHI) 方法结合 DBSI/DBSI-IA 指标和机器/深度学习算法
概括 MS 病理学的组织学特异性 目标 3b。
数据来自先前在过期计划项目中成像的 pwMS 队列。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHENG-KWEI SONG其他文献
SHENG-KWEI SONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHENG-KWEI SONG', 18)}}的其他基金
Virtual Histology for Assessing MS Pathologies
用于评估多发性硬化症病理学的虚拟组织学
- 批准号:
10517501 - 财政年份:2020
- 资助金额:
$ 45.84万 - 项目类别:
Image Data Acquisition, Analysis, and Modeling Core
图像数据采集、分析和建模核心
- 批准号:
8741889 - 财政年份:2008
- 资助金额:
$ 45.84万 - 项目类别:
Image Data Acquisition, Analysis, and Modeling Core
图像数据采集、分析和建模核心
- 批准号:
8741889 - 财政年份:2008
- 资助金额:
$ 45.84万 - 项目类别:
Image Data Acquisition, Analysis, and Modeling Core
图像数据采集、分析和建模核心
- 批准号:
9085409 - 财政年份:2008
- 资助金额:
$ 45.84万 - 项目类别:
Image Data Acquisition, Analysis, and Modeling Core
图像数据采集、分析和建模核心
- 批准号:
9275044 - 财政年份:2008
- 资助金额:
$ 45.84万 - 项目类别:
Validating diffusion MRI biomarkers of inflammation and axon pathologies in EAE
验证 EAE 中炎症和轴突病理的扩散 MRI 生物标志物
- 批准号:
8826186 - 财政年份:2008
- 资助金额:
$ 45.84万 - 项目类别:
Validating diffusion MRI biomarkers of inflammation and axon pathologies in EAE
验证 EAE 中炎症和轴突病理的扩散 MRI 生物标志物
- 批准号:
8741884 - 财政年份:2008
- 资助金额:
$ 45.84万 - 项目类别:
Noninvasive Quantification of Axon Damage in EAE and MS
EAE 和 MS 中轴突损伤的无创定量
- 批准号:
7755369 - 财政年份:2006
- 资助金额:
$ 45.84万 - 项目类别:
Noninvasive Quantification of Axon Damage in EAE and MS
EAE 和 MS 中轴突损伤的无创定量
- 批准号:
7148112 - 财政年份:2006
- 资助金额:
$ 45.84万 - 项目类别:
相似国自然基金
多区域环境因素复杂暴露反应关系的空间联合估计方法研究
- 批准号:82373689
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
区域出口产品升级的时空格局及机制研究——以粤港澳大湾区为例
- 批准号:42301182
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应对多重不确定性的区域综合能源系统分布渐进调度理论研究
- 批准号:52377108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
异质性视角下稻米区域公用品牌价值攀升协同治理机制研究
- 批准号:72373129
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
相似海外基金
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:
10664783 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
- 批准号:
10723977 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 45.84万 - 项目类别: