Neutralization Fingerprinting Analysis of Polyclonal Antibody Responses against HIV-1
HIV-1 多克隆抗体反应的中和指纹图谱分析
基本信息
- 批准号:9407909
- 负责人:
- 金额:$ 65.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-06 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsAntibodiesAntibody ResponseAntibody SpecificityAntigensAreaBindingBiologicalCharacteristicsCollaborationsCollectionComplexComputer AnalysisComputing MethodologiesDataDerivation procedureDevelopmentDonor SelectionEconomic BurdenEpitope MappingEpitopesFingerprintGenerationsGeneticGoalsHIVHIV InfectionsHIV-1HIV-1 vaccineHepatitis CImmune systemIndividualInfectionInfluenza C VirusKnock-outLaboratoriesLeast-Squares AnalysisLettersMachine LearningMethodsMonoclonal AntibodiesMutationPatternPhenotypePopulationPublic HealthSamplingSerumSignal TransductionSpecificityTechniquesTechnologyUnited States National Institutes of HealthVaccine DesignValidationVariantVirusWorkbasecohorthealth economicsimprovedneutralizing antibodynext generationnovelpolyclonal antibodyprospectiveresponsesample collectiontool
项目摘要
Project Summary
HIV-1 poses a substantial health and economic burden, with more than 30 million people currently infected
worldwide. The search for an effective HIV-1 vaccine remains a top priority, and a deeper understanding of
how the immune system recognizes HIV-1 can help inform vaccine design. Lately, much effort has focused on
understanding the antibody responses to HIV-1 infection. However, the polyclonal neutralizing antibody
responses in an individual are very complex. Standard methods for mapping such responses include various
experimental techniques, but more recently, computational methods were also developed. These
computational methods, which we call NFP (neutralization fingerprinting), are based on analysis of serum
neutralization data that is typically obtained in the very first stages of donor sample characterization, and are
therefore an efficient technology for accurately mapping antibody specificities in polyclonal responses. The
NFP algorithms have already become an important tool in the HIV field and are being used extensively by
laboratories throughout the world, including Duke CHAVI-ID, CAPRISA, NIH VRC, and MHRP.
Here, we propose to develop next-generation NFP algorithms and apply them to address biological
questions with important implications for understanding the interactions between HIV-neutralizing antibodies
and the virus. Specifically, we will develop and apply novel algorithms for: (1) Antibody specificity prediction
with significantly improved accuracy and reliability. These algorithms will immensely improve the utility of
the NFP approach for prospective identification of antibody specificities in polyclonal sera. (2) Mapping
broadly neutralizing antibody responses against novel epitopes on HIV-1 Env. We will use epitope-
structural analysis and computational search algorithms to identify novel Env epitopes, and will screen donor
samples for the presence of related NFP signals. Promising signals for novel antibody specificities will be
characterized further through collaborations. (3) Population-level analysis of broadly neutralizing antibody
responses to HIV-1. We will analyze large collections of samples from diverse HIV infection cohorts in order
to determine common antibody specificities elicited in response to HIV-1, as well as patterns of potential
association between features of the infecting virus sequence and the elicited epitope specificities.
The proposed NFP algorithms will be made available to the public, and will be useful in a number of
high-impact areas in the HIV field, including mapping of antibody specificities in previously uncharacterized
samples, identification of novel Env epitopes, and large-scale analysis of broadly neutralizing antibody
responses within a cohort, or at a population level. Overall, this work will lead to a better understanding of the
neutralizing antibody responses against HIV-1 and will build a more complete picture of the epitopes on Env.
The proposed algorithmic framework should be generalizable to other important viruses, such as influenza and
hepatitis C, and therefore has the potential for a far-reaching impact on public health.
项目概要
HIV-1 造成巨大的健康和经济负担,目前有超过 3000 万人感染
全世界。寻找有效的 HIV-1 疫苗仍然是当务之急,并且更深入地了解
免疫系统如何识别 HIV-1 有助于为疫苗设计提供信息。最近,很多努力都集中在
了解抗体对 HIV-1 感染的反应。然而,多克隆中和抗体
个人的反应非常复杂。绘制此类响应的标准方法包括各种
实验技术,但最近还开发了计算方法。这些
我们称之为 NFP(中和指纹法)的计算方法基于血清分析
中和数据通常在供体样品表征的第一阶段获得,并且是
因此,这是一种在多克隆反应中准确绘制抗体特异性的有效技术。这
NFP算法已经成为HIV领域的重要工具,并被广泛使用
世界各地的实验室,包括 Duke CHAVI-ID、CAPRISA、NIH VRC 和 MHRP。
在这里,我们建议开发下一代 NFP 算法并将其应用于解决生物问题
对于理解 HIV 中和抗体之间的相互作用具有重要意义的问题
和病毒。具体来说,我们将开发和应用新的算法:(1)抗体特异性预测
精度和可靠性显着提高。这些算法将极大地提高实用性
用于前瞻性鉴定多克隆血清中抗体特异性的 NFP 方法。 (2) 映射
广泛中和针对 HIV-1 Env 上新表位的抗体反应。我们将使用表位-
结构分析和计算搜索算法来识别新的 Env 表位,并筛选供体
是否存在相关 NFP 信号的样本。新型抗体特异性的有希望的信号将是
通过合作进一步表征。 (3) 广泛中和抗体的群体水平分析
对 HIV-1 的反应。我们将分析来自不同 HIV 感染群体的大量样本,以便按顺序进行分析
确定针对 HIV-1 引起的常见抗体特异性,以及潜在的模式
感染病毒序列特征与引发的表位特异性之间的关联。
拟议的 NFP 算法将向公众开放,并将在许多领域发挥作用
HIV 领域的高影响领域,包括绘制以前未表征的抗体特异性
样品、新型 Env 表位的鉴定以及广泛中和抗体的大规模分析
群体内或人群水平上的反应。总体而言,这项工作将有助于更好地理解
中和针对 HIV-1 的抗体反应,并将构建 Env 上表位的更完整图像。
所提出的算法框架应该可以推广到其他重要病毒,例如流感病毒和
丙型肝炎,因此有可能对公共健康产生深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivelin Georgiev其他文献
Ivelin Georgiev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivelin Georgiev', 18)}}的其他基金
Technologies for High-Throughput Mapping of Antigen Specificity to B-Cell-Receptor Sequence
B 细胞受体序列抗原特异性高通量作图技术
- 批准号:
10734412 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10686168 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
Antibody repertoire characterization in the context of coronaviruses
冠状病毒背景下的抗体库表征
- 批准号:
10266227 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10252047 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10478203 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10081501 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
相似国自然基金
基于融合智能算法的泵阀管网水力系统逆瞬变分析及泄漏辨识研究
- 批准号:52379095
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于图结构分析的全对偶整数性及算法研究
- 批准号:12371318
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
纠正擦除错误的线性码的译码算法和性能分析
- 批准号:62371259
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
心脏再生复杂动态系统的空间单细胞组学分析算法研究
- 批准号:62372209
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
Real time relapse risk scoring for Opioid Use Disorder (OUD) from clinical trial datasets
根据临床试验数据集对阿片类药物使用障碍 (OUD) 进行实时复发风险评分
- 批准号:
10585452 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
Computational Methods for Analyzing lmmunoglobulin Allelic Diversity in B cells
分析 B 细胞中免疫球蛋白等位基因多样性的计算方法
- 批准号:
10751541 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
A visualization interface for BRAIN single cell data, integrating transcriptomics, epigenomics and spatial assays
BRAIN 单细胞数据的可视化界面,集成转录组学、表观基因组学和空间分析
- 批准号:
10643313 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别: