Selection and sensing applications of DNAzymes selective for paramagnetic metal ions
顺磁性金属离子选择性 DNAzyme 的选择和传感应用
基本信息
- 批准号:9368105
- 负责人:
- 金额:$ 28.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAntibiotic ResistanceBacteriaBacterial InfectionsBindingBiochemicalBiological ModelsCatalytic DNACellsCleaved cellComplexConserved SequenceCytosolDNADependenceDetectionDevelopmentElectron Spin Resonance SpectroscopyElementsEscherichia coliFluorescence Resonance Energy TransferGoalsHealthHeavy IonsHomeostasisHost Defense MechanismHumanImmunityIn VitroInfectionIonsIronKineticsKnowledgeLegal patentLengthLifeLinkManganeseMeasurementMetal Ion BindingMetalsMethodsModelingMolecular ConformationMonitorMutagenesisNeurodegenerative DisordersNucleotidesNutritionalOrganismOutcomeOxidative StressOxidative Stress PathwayPathogenesisPathway interactionsPerformancePhagocytesProcessPublic HealthRandomizedRegulationRespiratory BurstRoleSamplingSignal TransductionSiteSite-Directed MutagenesisSpecificityStaphylococcus aureusStarvationSystemTechnologyTimeTitrationsValidationX-Ray Crystallographyabsorptionbasebiophysical analysisbiophysical propertiescatalystcombatcostdesignfield studyfight againstflexibilityfluorophorefunctional grouphigh riskimprovedinsightinterestnext generation sequencingnovelnovel strategiesoxidationpathogenpathogenic bacteriaperiplasmpreventratiometricsensorspatiotemporalstoichiometrythree dimensional structuretooluptake
项目摘要
Project summary / abstract
The overall goal of this project is to develop and validate a novel class of fluorescent sensors for
paramagnetic metal ions (PMIs, e.g., Fe2+, Fe3+, Mn2+ and Mn3+), and to use these sensors to provide deeper
insight into the uptake and homeostasis of PMIs in bacteria and the role of PMIs in pathogenesis. PMIs are
essential elements for both humans and bacteria; the availability of these metal ions is sharply limited for
pathogens, as a part of a host defense mechanism known as “nutritional immunity”; the most well characterized
examples being Fe and Mn sequestration during infection. Moreover, Fe and Mn-regulated pathways are closely
linked with pathways involved in managing oxidative stress, as occurs in phagocytic respiratory burst. Despite
the importance of PMIs in nutritional immunity and oxidative stress pathways, the precise mechanisms dictating
nutritional immunity, bacterial uptake of PMIs, and the ability of certain bacterial strains to circumvent metal
starvation and thrive are unclear. A major barrier to understanding these complex mechanisms is the lack of
spatiotemporal detection of PMIs in their different OSs in living bacterial cells. This proposal seeks to overcome
this major barrier by selection and characterization of PMI-specific DNAzymes, and subsequent development
and validation of DNAzyme-based turn-on fluorescent sensors selective not only for different PMIs, but also
different oxidation states of the same PMI in two model systems (Staphylococcus aureus and Escherichia coli).
Specifically, we plan to employ in vitro selection to obtain DNAzymes with high cleavage activity and strong
affinity for different PMIs (Fe2+ and Mn2+), while maintaining specificity for the different oxidation states of the
same metal ion (Fe2+ vs. Fe3+, and Mn2+ vs. Mn3+). Biochemical studies of these DNAzymes will provide
information about conserved sequences, pH and metal ion dependence, and kinetic parameters of the DNAzyme
activity. Biophysical characterization using spectroscopic methods (UV-vis and EPR) and x-ray crystallography
will elucidate PMI-binding stoichiometry, affinity and selectivity in these DNAzymes. The knowledge acquired will
be used to convert these DNAzymes into PMI sensors using the patented catalytic beacon technology. The use
of a “caged” and FRET DNAzyme sensor enabling quantitative monitoring of metal ion concentration and
speciation in living cells under temporal control will also be explored.
Since pathogenic bacteria such as S. aureus and E. coli are a major public health issue, especially due to
the spread of antibiotic resistance, our ability to develop turn-on fluorescent sensors for the real time detection
of PMIs in cells will overcome a major barrier within the field of nutritional immunity by improving our
understanding of the uptake and homeostasis of PMIs in bacteria and the role of PMIs in pathogenesis.
Ultimately, knowledge gained from these sensors could provide insights necessary to develop novel strategies
to fight against bacterial infection.
项目概要/摘要
该项目的总体目标是开发和验证一类新型荧光传感器
顺磁性金属离子(PMI,例如 Fe2+、Fe3+、Mn2+ 和 Mn3+),并使用这些传感器提供更深层次的检测
深入了解细菌中 PMI 的摄取和稳态以及 PMI 在发病机制中的作用。
人类和细菌的必需元素;这些金属离子的可用性非常有限
病原体,作为被称为“营养免疫”的宿主防御机制的一部分;
例如感染期间铁和锰的隔离。此外,铁和锰调节的途径密切相关。
尽管发生在吞噬细胞呼吸爆发中,但与管理氧化应激的途径有关。
PMI 在营养免疫和氧化应激途径中的重要性,其精确机制决定了
营养免疫、细菌对 PMI 的摄取以及某些细菌菌株规避金属的能力
饥饿和繁荣尚不清楚,理解这些复杂机制的一个主要障碍是缺乏。
该提案旨在克服活细菌细胞中不同操作系统中 PMI 的时空检测问题。
通过选择和表征 PMI 特异性 DNAzyme 以及后续开发来克服这一主要障碍
基于 DNAzyme 的开启荧光传感器的验证不仅对不同的 PMI 具有选择性,而且对
相同 PMI 在两个模型系统(金黄色葡萄球菌和大肠杆菌)中的不同氧化态。
具体来说,我们计划采用体外选择来获得具有高裂解活性和强的DNAzymes。
对不同 PMI(Fe2+ 和 Mn2+)的亲和力,同时保持对不同氧化态的特异性
相同的金属离子(Fe2+ 与 Fe3+,以及 Mn2+ 与 Mn3+)将提供这些 DNAzyme 的生化研究。
有关 DNAzyme 的保守序列、pH 和金属离子依赖性以及动力学参数的信息
使用光谱方法(UV-vis 和 EPR)和 X 射线晶体学进行生物物理表征。
将阐明这些 DNAzyme 中 PMI 结合的化学计量、亲和力和选择性。
使用专利催化信标技术将这些 DNAzyme 转化为 PMI 传感器。
“笼式”和 FRET DNAzyme 传感器能够定量监测金属离子浓度和
还将探讨时间控制下活细胞的物种形成。
由于金黄色葡萄球菌和大肠杆菌等致病菌是一个重大的公共卫生问题,特别是由于
抗生素耐药性的蔓延,我们开发用于实时检测的开启荧光传感器的能力
细胞中的 PMI 将通过改善我们的免疫系统来克服营养免疫领域的主要障碍
了解细菌中 PMI 的摄取和稳态以及 PMI 在发病机制中的作用。
最终,从这些传感器获得的知识可以提供开发新策略所需的见解
以对抗细菌感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Lu其他文献
Yi Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Lu', 18)}}的其他基金
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10673016 - 财政年份:2021
- 资助金额:
$ 28.26万 - 项目类别:
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10415131 - 财政年份:2021
- 资助金额:
$ 28.26万 - 项目类别:
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10476760 - 财政年份:2021
- 资助金额:
$ 28.26万 - 项目类别:
Design and Selection of Novel Metalloenzymes for Biocatalysis, Bioimaging, and Genetic Engineering
用于生物催化、生物成像和基因工程的新型金属酶的设计和选择
- 批准号:
10206576 - 财政年份:2021
- 资助金额:
$ 28.26万 - 项目类别:
Selection and sensing applications of DNAzymes selective for paramagnetic metal ions
顺磁性金属离子选择性 DNAzyme 的选择和传感应用
- 批准号:
9908095 - 财政年份:2017
- 资助金额:
$ 28.26万 - 项目类别:
Selection and sensing applications of DNAzymes selective for paramagnetic metal ions
顺磁性金属离子选择性 DNAzyme 的选择和传感应用
- 批准号:
10523906 - 财政年份:2017
- 资助金额:
$ 28.26万 - 项目类别:
Novel DNAzyme sensors for lithium and sodium to understand cellular and molecular mechanisms of lithium treatment of bipolar disorder
新型锂和钠 DNAzyme 传感器可了解锂治疗双相情感障碍的细胞和分子机制
- 批准号:
9169356 - 财政年份:2016
- 资助金额:
$ 28.26万 - 项目类别:
Novel DNAzyme sensors for lithium and sodium to understand cellular and molecular mechanisms of lithium treatment of bipolar disorder
新型锂和钠 DNAzyme 传感器可了解锂治疗双相情感障碍的细胞和分子机制
- 批准号:
9306205 - 财政年份:2016
- 资助金额:
$ 28.26万 - 项目类别:
Selection, Characterization & Application of Paramagnetic Metal-specific DNAzymes
选择、表征
- 批准号:
8073414 - 财政年份:2008
- 资助金额:
$ 28.26万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Non-tuberculous mycobacterium and B cells in the stimulation of ectopic germinal centers and immunological control of pulmonary tuberculosis
非结核分枝杆菌和 B 细胞在异位生发中心刺激和肺结核免疫控制中的作用
- 批准号:
10569865 - 财政年份:2023
- 资助金额:
$ 28.26万 - 项目类别:
Controlled antibiotic delivery vehicle for treatment of aggressiveperiodontitis
用于治疗侵袭性牙周炎的受控抗生素递送载体
- 批准号:
10662640 - 财政年份:2023
- 资助金额:
$ 28.26万 - 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 28.26万 - 项目类别:
Optimization of protective antibodies response against bacterial adhesins
针对细菌粘附素的保护性抗体反应的优化
- 批准号:
10731509 - 财政年份:2023
- 资助金额:
$ 28.26万 - 项目类别:
Development of nanobody immunotherapeutics that prevent and treat gonorrhea
开发预防和治疗淋病的纳米抗体免疫疗法
- 批准号:
10753164 - 财政年份:2023
- 资助金额:
$ 28.26万 - 项目类别: