Novel Glaucoma Diagnostics for Structure and Function - Renewal - 1
针对结构和功能的新型青光眼诊断 - 更新 - 1
基本信息
- 批准号:10866656
- 负责人:
- 金额:$ 68.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-14 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBlindnessCategoriesCharacteristicsClinicalClinical ManagementClinical ResearchComplexDataDetectionDevelopmentDiagnosticDiscriminationDiseaseDisease ProgressionEarly DiagnosisEarly identificationEvaluationEyeFloorFutureGlaucomaHealthHumanImageImaging technologyInner Plexiform LayerKnowledgeLaboratoriesLightMapsMeasurableMeasurementMeasuresMetabolicMethodologyModelingMonitorMorbidity - disease rateOptic DiskOptical Coherence TomographyOutcomeOxygen ConsumptionOxygen saturation measurementPathologyResearch ProposalsResolutionRetinaRetinal DiseasesScanningSeveritiesSeverity of illnessSignal TransductionSourceStructureStructure-Activity RelationshipSystemTechniquesTechnologyThickTimeTissue ExtractsTissuesTranslatingVisible RadiationVisionVisual FieldsWidthadvanced diseaseanalytical methodclinical practicecohortcomputerizeddeep learningdensityganglion cellimprovedin vivoinformation gatheringinnovationinnovative technologiesinsightinstrumentinventionknowledge baselongitudinal datasetmachine learning methodmaculamathematical methodsnew technologynovelnovel strategiesocular imagingpreservationpreventprogramsresearch studyretinal imagingretinal nerve fiber layertissue oxygenationtool
项目摘要
Project Summary
Glaucoma is a leading cause of vision morbidity and blindness worldwide. Early disease detection and
sensitive monitoring of progression are crucial to allow timely treatment for preservation of vision. The
introduction of ocular imaging technologies significantly improves these capabilities, but in clinical practice
there are still substantial challenges at certain stages of the disease severity spectrum, specifically in the early
stage and in advanced disease. These difficulties are due to a variety of causes that change over the course of
the disease, including large between-subject variability, inherent measurement variability, image quality,
varying dynamic ranges of measurements, minimal measurable level of tissues, etc. In this proposal, we build
on our long-standing contribution to ocular imaging and propose novel and sensitive means to detect glaucoma
and its progression that are optimized to the various stages of disease severity. We will use information
gathered from visual fields (functional information) and a leading ocular imaging technology – optical
coherence tomography (OCT; structural information) to map the capability of detecting changes across the
entire disease severity spectrum to identify optimal parameters for each stage of the disease. Both commonly
used parameters provided by the technologies and newly developed parameters with good diagnostic potential
will be analyzed. We will use state-of-the-art automated computerized machine learning methods, namely the
deep learning approach, to identify structural features embedded within OCT images that are associated with
glaucoma and its progression without any a priori assumptions. This will provide novel insight into structural
information, and has shown very encouraging preliminary results. We will also utilize a new imaging
technology, the visible light OCT, to generate retinal images with outstanding resolution to extract information
about the oxygen saturation of the tissue. This will provide in-vivo, real time, and noninvasive insight into tissue
functionality. Taken together, this program will advance the use of structural and functional information with a
substantial impact on the clinical management of subjects with glaucoma
项目摘要
青光眼是全球视力发病率和失明的主要原因。早期疾病检测和
对进展的敏感监测对于允许及时治疗视力至关重要。这
引入眼成像技术可显着提高这些能力,但在临床实践中
在疾病严重程度谱的某些阶段仍然存在重大挑战,特别是在早期
阶段和晚期疾病。这些困难是由于多种原因在整个过程中发生了变化
该疾病,包括大型受试者之间的可变性,继承测量可变性,图像质量,
不同的动态测量范围,可测量的组织水平等。在此提案中,我们构建
关于我们对眼部成像和建议的长期贡献,可发现青光眼的新颖和敏感手段
及其进展已被优化为疾病严重程度的各个阶段。我们将使用信息
从视野(功能信息)和领先的眼部成像技术收集 - 光学
相干断层扫描(OCT;结构信息)绘制检测整个变化的能力
整个疾病的严重程度,以确定疾病每个阶段的最佳参数。两者通常
技术和新开发的参数提供的使用参数具有良好的诊断潜力
将进行分析。我们将使用最先进的自动计算机化机器学习方法,即
深度学习方法,以识别与OCT图像中嵌入的结构特征
青光眼及其进展没有任何先验假设。这将为结构提供新颖的见解
信息,并显示出非常令人鼓舞的初步结果。我们还将利用新成像
技术,可见光的OCT,以生成具有出色分辨率的常规图像以提取信息
关于组织的氧气满足。这将提供对组织的体内,实时和无创的洞察力
功能。综上所述,该程序将推动使用结构和功能信息的使用
对青光眼受试者的临床管理的实质性影响
项目成果
期刊论文数量(106)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating pulsatile ocular blood flow analysis in normal and treated glaucomatous eyes.
评估正常和治疗青光眼眼睛的脉动眼血流分析。
- DOI:10.1016/s0002-9394(03)00237-x
- 发表时间:2003
- 期刊:
- 影响因子:4.2
- 作者:Aydin,Ali;Wollstein,Gadi;Price,LoriLyn;Schuman,JoelS
- 通讯作者:Schuman,JoelS
Macular assessment using optical coherence tomography for glaucoma diagnosis.
- DOI:10.1136/bjophthalmol-2012-301845
- 发表时间:2012-12
- 期刊:
- 影响因子:0
- 作者:Sung KR;Wollstein G;Kim NR;Na JH;Nevins JE;Kim CY;Schuman JS
- 通讯作者:Schuman JS
Attention-Guided 3D-CNN Framework for Glaucoma Detection and Structural-Functional Association Using Volumetric Images.
- DOI:10.1109/jbhi.2020.3001019
- 发表时间:2020-12
- 期刊:
- 影响因子:7.7
- 作者:George Y;Antony BJ;Ishikawa H;Wollstein G;Schuman JS;Garnavi R
- 通讯作者:Garnavi R
Associations between Optic Nerve Head-Related Anatomical Parameters and Refractive Error over the Full Range of Glaucoma Severity.
- DOI:10.1167/tvst.6.4.9
- 发表时间:2017-07
- 期刊:
- 影响因子:3
- 作者:Baniasadi N;Wang M;Wang H;Mahd M;Elze T
- 通讯作者:Elze T
Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration.
- DOI:10.1007/978-3-642-04268-3_13
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Ricco, Susanna;Chen, Mei;Ishikawa, Hiroshi;Wollstein, Gadi;Schuman, Joel
- 通讯作者:Schuman, Joel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel S Schuman其他文献
Joel S Schuman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel S Schuman', 18)}}的其他基金
Clinical glaucoma management enabled by visible-light OCT
可见光 OCT 实现临床青光眼管理
- 批准号:
10696088 - 财政年份:2021
- 资助金额:
$ 68.75万 - 项目类别:
Clinical glaucoma management enabled by visible-light OCT
可见光 OCT 实现临床青光眼管理
- 批准号:
10279742 - 财政年份:2021
- 资助金额:
$ 68.75万 - 项目类别:
Clinical glaucoma management enabled by visible-light OCT
可见光 OCT 实现临床青光眼管理
- 批准号:
10487592 - 财政年份:2021
- 资助金额:
$ 68.75万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
9542334 - 财政年份:2016
- 资助金额:
$ 68.75万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
9350830 - 财政年份:2016
- 资助金额:
$ 68.75万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7487755 - 财政年份:2005
- 资助金额:
$ 68.75万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7674649 - 财政年份:2005
- 资助金额:
$ 68.75万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
6983251 - 财政年份:2005
- 资助金额:
$ 68.75万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7273552 - 财政年份:2005
- 资助金额:
$ 68.75万 - 项目类别:
Novel Glaucoma Diagnostics for Structure and Function
新型青光眼结构和功能诊断
- 批准号:
7124631 - 财政年份:2005
- 资助金额:
$ 68.75万 - 项目类别:
相似国自然基金
巨噬细胞极化在糖尿病视网膜纤维增生中的作用及其调节机制
- 批准号:81760149
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
盲人脑网络可塑性的磁共振影像研究
- 批准号:30900476
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantitative MRI for Pediatric Optic Pathway Glioma Treatment Response
定量 MRI 评估儿童视神经胶质瘤治疗反应
- 批准号:
10681375 - 财政年份:2020
- 资助金额:
$ 68.75万 - 项目类别:
Quantitative MRI for Pediatric Optic Pathway Glioma Treatment Response
定量 MRI 评估儿童视神经胶质瘤治疗反应
- 批准号:
10668581 - 财政年份:2020
- 资助金额:
$ 68.75万 - 项目类别:
Quantitative MRI for Pediatric Optic Pathway Glioma Treatment Response
定量 MRI 评估儿童视神经胶质瘤治疗反应
- 批准号:
9927849 - 财政年份:2020
- 资助金额:
$ 68.75万 - 项目类别:
A Snapshot Adaptive Optics and Hyperspectral Autofluorescence Fundus Camera for Age-Related Macular Degeneration (AMD)
用于年龄相关性黄斑变性 (AMD) 的快照自适应光学和高光谱自发荧光眼底相机
- 批准号:
10372168 - 财政年份:2020
- 资助金额:
$ 68.75万 - 项目类别: