Mechanisms of mechano-chemical rupture of blood clots and thrombi

血凝块和血栓的机械化学破裂机制

基本信息

  • 批准号:
    10617840
  • 负责人:
  • 金额:
    $ 63.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Mechanisms of mechano-chemical rupture of blood clots and thrombi Prashant K. Purohit, John L. Bassani, Valeri Barsegov and John W. Weisel The goal of this proposal is to explore and understand the fracture toughness of blood clots and thrombi, thus providing a mechanistic basis for life-threatening thrombotic embolization. A combination of experiments, theoretical modeling and computer simulations will reveal how mechanical stresses (due to blood flow) in synergy with enzymatic lysis induce structural damage from the molecular to continuum scales and affect the propensity of a clot to embolize. The specific aims of this proposal are: (1) Measure and model fracture toughness of fibrin gels in quasi-static conditions, (2) Investigate rate dependent dissipative effects on toughness of fibrin gels, and (3) Study the effects of blood cells, prothrombotic blood composition, and fibrinolysis on rupture of blood clots. In Specific Aim (SA) 1, we will measure toughness of fibrin clots and provide a structural basis for rupture at the micron and nanometer scales. In SA2, we will delve into the thermodynamics and rate-dependence of the fracture of fibrin gels, including fluid flow through pores and fluid drag on fibrin fibers to capture how energy dissipation increases toughness. In the translational SA3, we will investigate toughness of physiologically relevant clots with effects of platelets, red blood cells, and neutrophils in the absence and presence of the physiological fibrinolytic activator (tPA). We will also study the rupture of clots made from the blood of venous thromboembolism patients to explore the effects of (pro)thrombotic alterations of blood composition on clot mechanical stability. Our preliminary studies show that i) the toughness of cross-linked fibrin gels is in the range of those for synthetic hydrogels, ii) the addition of tPA to a crack tip reduces the loads for crack growth, iii) fibers are aligned and broken along the tensile direction at the crack tip, and iv) crack propagation results from the rupture of covalent and non-covalent bonds. We also developed v) dynamic force spectroscopy in silico to mechanically test fibrin fibers and fibrin networks using pulling simulations and vi) atomic stress approach to map the stress-strain fields using the output from simulations. We will use continuum and finite element models of swellable biopolymer hydrogels, and statistical mechanical models for the forced unfolding of fibrin molecules. We will employ multiscale computational modeling based on Molecular Dynamics simulations of atomic structures of fibrin fibers, and Langevin simulations of fibrin networks accelerated on Graphics Processing Units. The proposed experiments cover the whole gamut of macroscopic tensile tests, shear rheometry, electron microscopy and confocal microscopy to visualize and quantitate the structural alterations of ruptured blood clots. Our experiments and modeling will help us to understand the mechanisms of thrombotic embolization and will address the clinically important question: why is there a strong association between clot structure/mechanical properties and cardiovascular diseases? The new knowledge will also help to design new hydrogel-based biomaterials that are currently at the forefront of research in mechanics, materials science and bioengineering.
血凝块和血栓的机械化学破裂机制 Prashant K. Purohit、John L. Bassani、Valeri Barsegov 和 John W. Weisel 该提案的目标是探索和了解血凝块和血栓的断裂韧性,从而 为危及生命的血栓栓塞提供机制基础。结合实验, 理论模型和计算机模拟将揭示机械应力(由于血流)如何 与酶裂解的协同作用会导致从分子到连续尺度的结构损伤,并影响 凝块栓塞的倾向。该提案的具体目标是: (1) 测量和模拟断裂 纤维蛋白凝胶在准静态条件下的韧性,(2) 研究速率依赖性耗散效应 纤维蛋白凝胶的韧性,以及 (3) 研究血细胞、血栓前血液成分的影响, 和血凝块破裂时的纤维蛋白溶解。在特定目标 (SA) 1 中,我们将测量纤维蛋白凝块的韧性 并为微米和纳米尺度的破裂提供结构基础。在 SA2 中,我们将深入研究 纤维蛋白凝胶断裂的热力学和速率依赖性,包括通过孔隙的流体流动和流体 拖动纤维蛋白纤维以捕捉能量耗散如何增加韧性。在翻译 SA3 中,我们将 研究生理相关凝块的韧性以及血小板、红细胞和中性粒细胞的影响 在生理性纤溶激活剂 (tPA) 存在和不存在的情况下。我们还将研究破裂 由静脉血栓栓塞患者的血液制成的凝块,以探索(促)血栓形成的影响 血液成分的改变对凝块机械稳定性的影响。我们的初步研究表明 i) 韧性 交联纤维蛋白凝胶的含量在合成水凝胶的范围内,ii) 在裂纹尖端添加 tPA 减少裂纹扩展的载荷,iii) 纤维在裂纹尖端沿拉伸方向排列和断裂, iv) 裂纹扩展是由共价键和非共价键断裂引起的。我们还开发了v) 计算机动态力谱通过拉力机械测试纤维蛋白纤维和纤维蛋白网络 模拟和 vi) 原子应力方法,使用模拟的输出来绘制应力-应变场。 我们将使用可膨胀生物聚合物水凝胶的连续体和有限元模型以及统计力学 纤维蛋白分子强制展开的模型。我们将采用基于多尺度计算建模 纤维蛋白纤维原子结构的分子动力学模拟和纤维蛋白的朗之万模拟 网络在图形处理单元上加速。所提出的实验涵盖了整个领域 宏观拉伸测试、剪切流变测定、电子显微镜和共焦显微镜,以可视化和 定量破裂血凝块的结构变化。我们的实验和建模将帮助我们 了解血栓栓塞的机制并解决临床上重要的问题:为什么 凝块结构/机械特性与心血管疾病之间是否存在密切关联?这 新知识还将有助于设计目前处于前沿的新型水凝胶生物材料 研究领域为力学、材料科学和生物工程。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
  • DOI:
    10.1016/j.actbio.2021.09.050
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Maksudov F;Daraei A;Sesha A;Marx KA;Guthold M;Barsegov V
  • 通讯作者:
    Barsegov V
Effects of Hyperhomocysteinemia on the Platelet-Driven Contraction of Blood Clots.
  • DOI:
    10.3390/metabo11060354
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Litvinov RI;Peshkova AD;Le Minh G;Khaertdinov NN;Evtugina NG;Sitdikova GF;Weisel JW
  • 通讯作者:
    Weisel JW
Fluctuating nonlinear spring theory: Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction of force-deformation spectra.
  • DOI:
    10.1016/j.actbio.2020.12.043
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Maksudov F;Kononova O;Llauró A;Ortega-Esteban A;Douglas T;Condezo GN;Martín CS;Marx KA;Wuite GJL;Roos WH;de Pablo PJ;Barsegov V
  • 通讯作者:
    Barsegov V
Finite deformation near a crack tip terminated at an interface between two neo-Hookean sheets.
裂纹尖端附近的有限变形终止于两个新胡克板之间的界面。
Cracks in tensile-contracting and tensile-dilating poroelastic materials.
  • DOI:
    10.1016/j.ijsolstr.2023.112563
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Konstantinos Garyfallogiannis;Prashant K. Purohit;John L. Bassani
  • 通讯作者:
    Konstantinos Garyfallogiannis;Prashant K. Purohit;John L. Bassani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prashant Kishore Purohit其他文献

Prashant Kishore Purohit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prashant Kishore Purohit', 18)}}的其他基金

Mechanisms of mechano-chemical rupture of blood clots and thrombi
血凝块和血栓的机械化学破裂机制
  • 批准号:
    10411976
  • 财政年份:
    2020
  • 资助金额:
    $ 63.63万
  • 项目类别:
Mechanisms of mechano-chemical rupture of blood clots and thrombi
血凝块和血栓的机械化学破裂机制
  • 批准号:
    10165811
  • 财政年份:
    2020
  • 资助金额:
    $ 63.63万
  • 项目类别:
Experiment-based multi-scale modeling of the tensile and compressive deformations of fibrin
基于实验的纤维蛋白拉伸和压缩变形的多尺度建模
  • 批准号:
    9218422
  • 财政年份:
    2017
  • 资助金额:
    $ 63.63万
  • 项目类别:

相似国自然基金

Kartogenin/羟丙基纤维素复合涂层对PET韧带材料生物相容性和腱-骨愈合的影响及机制研究
  • 批准号:
    81601879
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
新型界面微层结构对生物质基高分子复合材料性能影响的研究
  • 批准号:
    51573066
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
钛系生物材料表面微纳结构特征对蛋白质吸附的影响机制研究
  • 批准号:
    51201050
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
仿生矿化涂层对PET韧带材料生物相容性及腱骨愈合的影响
  • 批准号:
    81271958
  • 批准年份:
    2012
  • 资助金额:
    72.0 万元
  • 项目类别:
    面上项目
生物材料对细胞DNA合成及对胶原mRNA基因的影响
  • 批准号:
    39670220
  • 批准年份:
    1996
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Engineering the open porous nanofibrous microsphere integrated fibrillar hydrogel for the co-delivery of antibacterial and angiogenic agents aimed at the rapid diabetic wound repair
设计开放多孔纳米纤维微球集成纤维水凝胶,用于共同递送抗菌剂和血管生成剂,旨在快速修复糖尿病伤口
  • 批准号:
    10737115
  • 财政年份:
    2023
  • 资助金额:
    $ 63.63万
  • 项目类别:
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
  • 批准号:
    10861531
  • 财政年份:
    2023
  • 资助金额:
    $ 63.63万
  • 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
  • 批准号:
    10564801
  • 财政年份:
    2023
  • 资助金额:
    $ 63.63万
  • 项目类别:
Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
  • 批准号:
    10811395
  • 财政年份:
    2023
  • 资助金额:
    $ 63.63万
  • 项目类别:
Engineered Biotherapeutic Agent for Treatment of Post-Traumatic Osteoarthritis
用于治疗创伤后骨关节炎的工程生物治疗剂
  • 批准号:
    10821518
  • 财政年份:
    2023
  • 资助金额:
    $ 63.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了