An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
基本信息
- 批准号:10910349
- 负责人:
- 金额:$ 18.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgingAgreementAmino Acid MotifsAmino AcidsAntibodiesAutoimmune DiseasesAutoimmunityB-LymphocytesBase SequenceBig DataBindingBiophysicsCharacteristicsChargeClassificationClinicalCollectionComplexComputer ModelsCreativenessData SetDependenceDiagnosisDiagnosticDiagnostic testsDiseaseEnsureEntropyFosteringGene FrequencyGenesGoalsHealthHumanImmuneImmunologyIndividualInfectionInfluenza vaccinationIntuitionLearningLettersMachine LearningMalignant NeoplasmsMathematicsMeasurementMeasuresMedicineMethodsMissionModelingOutcomePatternPerformancePersonsPhysicsPlayPopulation HeterogeneityPrivatizationPropertyPublic HealthReadingReportingResearchRoleSample SizeSamplingSampling ErrorsSigns and SymptomsSpeedSystemT-Cell ReceptorT-Cell Receptor GenesT-LymphocyteTestingUnited States National Institutes of HealthVaccinationVirus DiseasesWorkbiophysical propertiesclinical diagnosticscomputerized toolsdiagnostic accuracyhuman diseaseimmunological diversityimprovedinnovationmachine learning methodmultidisciplinarymultilevel analysisnovelnovel strategiestool
项目摘要
Immune-repertoire sequence, which consists of an individual's millions of unique antibody and T-cell receptor
(TCR) genes, encodes a dynamic and highly personalized record of an individual's state of health. Our long-
term goal is to develop the computational models and tools necessary to read this record, to one day be able
diagnose diverse infections, autoimmune diseases, cancers, and other conditions directly from repertoire se-
quence. The key problem is how to find patterns of specific diseases in repertoire sequence, when repertoires
are so complex. Our hypothesis is that a combination of bottom-up (sequence-level) and top-down (systems-
level) modeling can reveal these patterns, by encoding repertoires as simple but highly informative models that
can be used to build highly sensitive and specific disease classifiers. In preliminary studies, we introduced
two new modeling approaches for this purpose: (i) statistical biophysics (bottom-up) and (ii) functional diversity
(top-down), and showed their ability to elucidate patterns related to vaccination status (97% accuracy), viral
infection, and aging. Building on these studies, we will test our hypothesis through two specific aims: (1) We
will develop models and classifiers based on the bottom-up approach, statistical biophysics; and (2) we will de-
velop the top-down approach, functional diversity, to improve these classifiers. To achieve these aims, we will
use our extensive collection of public immune-repertoire datasets, beginning with 391 antibody and TCR da-
tasets we have characterized previously. Our team has deep and complementary expertise in developing
computational tools for finding patterns in immune repertoires (Dr. Arnaout) and in the mathematics that under-
lie these tools (Dr. Altschul), with additional advice available as needed regarding machine learning (Dr.
AlQuraishi). This proposal is highly innovative for how our two new approaches address previous issues in the
field. (i) Statistical biophysics uses a powerful machine-learning method called maximum-entropy modeling
(MaxEnt), improving on past work by tailoring MaxEnt to learn patterns encoded in the biophysical properties
(e.g. size and charge) of the amino acids that make up antibodies/TCRs; these properties ultimately determine
what targets antibodies/TCRs can bind, and therefore which sequences are present in different diseases. (ii)
Functional diversity fills a key gap in how immunological diversity has been measured thus far, by factoring in
whether different antibodies/TCRs are likely to bind the same target. This proposal is highly significant for (i)
developing an efficient, accurate, generative, and interpretable machine-learning method for finding diagnostic
patterns in repertoire sequence; (ii) applying a robust mathematical framework to the measurement of immuno-
logical diversity; (iii) impacting clinical diagnostics; and (iv) adding a valuable new tool for integrative/big-data
medicine. The expected outcome of this proposal is an integrated pair of robust and well validated new
tools/models for classifying specific disease exposures directly from repertoire sequence. This proposal in-
cludes plans to make these tools widely available, to maximize their positive impact across medicine.
免疫替代序列,由个人的数百万抗体和T细胞受体组成
(TCR)基因编码个人健康状况的动态和个性化的记录。我们的长期
术语目标是开发读取此记录所需的计算模型和工具,有一天能够
诊断出多种感染,自身免疫性疾病,癌症和其他疾病直接来自曲目
quence。关键问题是如何在曲目序列中找到特定疾病的模式
是如此复杂。我们的假设是自下而上(序列级)和自上而下的组合(系统 -
级别的建模可以通过将曲目编码为简单但信息丰富的模型来揭示这些模式
可用于构建高度敏感和特定的疾病分类器。在初步研究中,我们介绍了
为此目的的两种新建模方法:(i)统计生物物理学(自下而上)和(ii)功能多样性
(自上而下),并显示了他们阐明与疫苗接种状态相关的模式(精度为97%),病毒
感染和衰老。在这些研究的基础上,我们将通过两个具体目标检验我们的假设:(1)我们
将根据自下而上的方法,统计生物物理学开发模型和分类器; (2)我们将
从自上而下的方法,功能多样性,以改善这些分类器。为了实现这些目标,我们将
使用我们广泛的公共免疫替代数据集,从391抗体和TCR DA-开始
我们以前已经表征了Taset。我们的团队在发展方面具有深厚的互补专业知识
用于在免疫曲目中查找模式的计算工具(Arnaout博士)以及数学不足的数学
说出这些工具(Altschul博士),并根据需要提供有关机器学习的其他建议(博士
Alquraishi)。该提案对于我们的两种新方法如何解决以前的问题是高度创新的
场地。 (i)统计生物物理学使用一种强大的机器学习方法,称为最大入侵建模
(Maxent),通过调整Maxent学习生物物理特性中编码的模式来改善过去的工作
构成抗体/TCR的氨基酸的(例如大小和电荷);这些属性最终确定
靶向抗体/TCR可以结合的是什么,因此在不同的疾病中存在哪些序列。 (ii)
功能多样性填补了迄今为止通过考虑到迄今为止免疫学多样性的关键差距
不同的抗体/TCR是否可能结合相同的靶标。该建议对于(i)非常重要
开发一种有效,准确,生成和可解释的机器学习方法,以查找诊断
曲目序列中的模式; (ii)将强大的数学框架应用于免疫的测量
逻辑多样性; (iii)影响临床诊断; (iv)为综合/大数据添加有价值的新工具
药品。该提案的预期结果是一对综合的稳健且经过良好验证的新的
直接从曲目序列中直接对特定疾病暴露进行分类的工具/模型。这项提议中
Cludes计划将这些工具广泛使用,以最大程度地发挥其在药物上的积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramy Arnaout其他文献
Ramy Arnaout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramy Arnaout', 18)}}的其他基金
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10165490 - 财政年份:2020
- 资助金额:
$ 18.23万 - 项目类别:
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10598522 - 财政年份:2020
- 资助金额:
$ 18.23万 - 项目类别:
An Integrated Multilevel Modeling Framework for Repertoire-Based Diagnostics
用于基于指令的诊断的集成多级建模框架
- 批准号:
10393605 - 财政年份:2020
- 资助金额:
$ 18.23万 - 项目类别:
Demographics Causes and Consequences of B Cell Repertoire Diversity
B 细胞库多样性的人口统计学原因和后果
- 批准号:
9199843 - 财政年份:2015
- 资助金额:
$ 18.23万 - 项目类别:
Demographics Causes and Consequences of B Cell Repertoire Diversity
B 细胞库多样性的人口统计学原因和后果
- 批准号:
8991476 - 财政年份:2015
- 资助金额:
$ 18.23万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 18.23万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 18.23万 - 项目类别: