Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
基本信息
- 批准号:9247800
- 负责人:
- 金额:$ 24.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAcetylationAddressAnimal ModelAutomobile DrivingBioenergeticsCarbonCardiacCardiac MyocytesCardiac developmentCessation of lifeChronicData SetDevelopmentDiseaseDisease ProgressionDown-RegulationEnergy-Generating ResourcesEtiologyEventFatty AcidsFunctional disorderFundingGene TargetingGenesGlucoseGoalsHeartHeart HypertrophyHeart failureHomeostasisHumanHypertensionHypertrophyKetone BodiesKetonesMetabolicMetabolismMitochondriaMitochondrial ProteinsMusMyocardialNational Heart, Lung, and Blood InstituteNutraceuticalOxidative PhosphorylationOxidesPathogenesisPathologicPhysiologicalPrevention strategyProcessProtein AcetylationProteinsProteomicsPublishingRegulator GenesRoleRouteSamplingSeriesSourceStarvationSystems BiologyTestingTissuesTranscriptVentricular Functionbasecardiogenesiscomparativedesignend stage diseaseexercise trainingexperimental studyfatty acid oxidationglobal healthinnovationinorganic phosphateknockout genemetabolomicsmouse modelnew therapeutic targetnovel strategiesnovel therapeutic interventionoxidationpressurepreventprotein functionpublic health relevancestoichiometrytherapeutic targettranscriptomics
项目摘要
DESCRIPTION (provided by applicant): Significant evidence indicates that during the development of heart failure (HF) the heart undergoes dramatic alterations in mitochondrial fuel metabolism and bioenergetics. Specifically, the capacity for oxidizing the chief fuels, fatty acids
and glucose, becomes constrained during the development of cardiac hypertrophy, and in the failing heart. Studies in animal models and in humans have shown that a reduction in myocardial high-energy phosphate stores occurs in early stages of HF, setting the stage for a vicious cycle of "energy-starvation", contractile dysfunction, and progression of disease. To date, most studies aimed at delineating mechanisms driving the energy metabolic derangements of HF have been conducted in late stage disease, and have focused on gene regulatory mechanisms. The results of such studies have pointed to altered mitochondrial function, cardiac myocyte death, and widespread downregulation of genes involved in mitochondrial energy transduction. However, it is likely that many of these abnormalities reflect end-stage irreversible processes. Over the past several years, we have embarked on studies to elucidate energy metabolic remodeling events that occur in early stages of pathologic remodeling in route to HF in well-defined mouse models. For these studies, we employed a systems biology approach supported by an NHLBI-supported team-based funding initiative (RFA-HL-10-002). Integrated transcriptomic and metabolomics profiling was conducted on heart samples representing pathologic (pressure overload) and adaptive (exercise training) forms of cardiac hypertrophy, and in the early stages of HF. Comparative analysis of the datasets led to several surprising findings that have led to the hypothesis that during the early stages of pathologic cardiac remodeling caused by pressure overload, a myocardial substrate shift from reliance on fatty acids to ketone utilization sets the stage for expansion of the mitochondrial acetyl-CoA pool resulting in hyperacetylation of mitochondrial proteins, further reducing capacity for fuel oxidation and contributing to the pathogenesis of HF. We have assembled a multi-PI team to address this hypothesis. In Aim 1, we will employ a novel approach to define the stoichiometry of mitochondrial protein acetylation, and determine its functional consequences, in the early stage failing mouse heart. In Aim 2, we will determine the impact of modulating mitochondrial short-chain carbon export on protein acetylation, substrate metabolism, and remodeling in the normal, hypertrophied, and failing heart. Aim 3 is designed to explore the impact of chronic shifts in myocardial fuel utilization on cardiac mitochondrial protein acetylatio, substrate metabolism, and remodeling in the normal and failing mouse heart. The long-term goal of this project is to identify new mechanisms and therapeutic targets relevant to the development of innovative metabolic modulatory strategies for the prevention and early-stage treatment of heart failure.
描述(由申请人提供):重要证据表明,在心力衰竭(HF)的发展过程中,心脏的线粒体燃料代谢和生物能量学发生了巨大的变化,具体来说,氧化主要燃料脂肪酸的能力。
动物模型和人类研究表明,在心力衰竭的早期阶段,心肌高能磷酸盐储存量会减少,从而为恶性病变奠定了基础。迄今为止,大多数旨在描述心力衰竭能量代谢紊乱机制的研究都是在疾病晚期进行的,并集中在基因调控机制上。这样的研究指出线粒体功能改变、心肌细胞死亡以及参与线粒体能量转导的基因广泛下调。然而,这些异常可能反映了在过去几年中的终末期不可逆过程。研究旨在阐明在明确的小鼠模型中发生于心力衰竭病理重塑早期阶段的能量代谢重塑事件。在这些研究中,我们采用了由 NHLBI 支持的团队资助计划支持的系统生物学方法。 (RFA-HL-10-002) 对代表病理性(压力超负荷)和适应性(运动训练)形式的心脏肥大的心脏样本进行了综合转录组学和代谢组学分析,并在心力衰竭的早期阶段进行了数据集的比较分析。导致了一些令人惊讶的发现,这些发现导致了这样的假设:在压力超负荷引起的病理性心脏重塑的早期阶段,心肌底物从依赖脂肪酸转向酮利用奠定了基础线粒体乙酰辅酶A库的扩张导致线粒体蛋白质过度乙酰化,进一步降低燃料氧化能力并促进心力衰竭的发病机制,我们已经组建了一个多PI团队来解决这一假设。一种定义线粒体蛋白乙酰化化学计量并确定其功能后果的新方法,在目标 2 中,我们将确定调节线粒体的影响。短链碳输出对正常、肥大和衰竭心脏中蛋白质乙酰化、底物代谢和重塑的影响 目标 3 旨在探索心肌燃料利用的慢性变化对心脏线粒体蛋白质乙酰化、底物代谢和重塑的影响。该项目的长期目标是确定与开发创新代谢调节策略相关的新机制和治疗靶点,以预防和早期治疗心力衰竭。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL PATRICK KELLY其他文献
DANIEL PATRICK KELLY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL PATRICK KELLY', 18)}}的其他基金
Targeting Ketone Metabolism as a Novel Heart Failure Therapy
以酮代谢为目标的新型心力衰竭疗法
- 批准号:
10371874 - 财政年份:2020
- 资助金额:
$ 24.71万 - 项目类别:
Targeting Ketone Metabolism as a Novel Heart Failure Therapy
以酮代谢为目标的新型心力衰竭疗法
- 批准号:
10592265 - 财政年份:2020
- 资助金额:
$ 24.71万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
10643903 - 财政年份:2016
- 资助金额:
$ 24.71万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
10430277 - 财政年份:2016
- 资助金额:
$ 24.71万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
10296253 - 财政年份:2016
- 资助金额:
$ 24.71万 - 项目类别:
Probing the Role of Mitochondrial Short-chain Carbon Homeostasis in the Hypertrophied and Failing Heart
探讨线粒体短链碳稳态在肥厚和衰竭心脏中的作用
- 批准号:
9103283 - 财政年份:2016
- 资助金额:
$ 24.71万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
8241923 - 财政年份:2010
- 资助金额:
$ 24.71万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
8063188 - 财政年份:2010
- 资助金额:
$ 24.71万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
7847729 - 财政年份:2010
- 资助金额:
$ 24.71万 - 项目类别:
A Genomic/Metabolomic Strategy to Characterize Cardiac Mitochondrial Dysfunction
表征心脏线粒体功能障碍的基因组/代谢组学策略
- 批准号:
8435396 - 财政年份:2010
- 资助金额:
$ 24.71万 - 项目类别:
相似国自然基金
组蛋白乳酸化激活ac4C乙酰化促进葡萄膜黑色素瘤发展的作用机制研究
- 批准号:82373298
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
IDF代谢产物异丁酸通过促进H2AK5和H2BK12乙酰化修饰调控c-Myc影响NSCLC的分子机制及流行病学研究
- 批准号:82304235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群短链脂肪酸代谢物通过组蛋白去乙酰化酶HDAC2/ELK1通路调控模拟失重下成骨细胞分化和骨形成的机制研究
- 批准号:82302112
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于组蛋白去乙酰化酶调控策略挖掘海洋真菌SX7S7中隐性次级代谢产物及其调控机制研究
- 批准号:32300070
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组蛋白去乙酰化酶CsHDA6参与调控茶尺蠖侵害诱导茶叶产生α-法尼烯的分子机制
- 批准号:32302356
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Epigenetic and metabolic mechanisms of environmentally-induced transgenerational germline dysfunction
环境诱导的跨代种系功能障碍的表观遗传和代谢机制
- 批准号:
10606928 - 财政年份:2023
- 资助金额:
$ 24.71万 - 项目类别:
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10877377 - 财政年份:2023
- 资助金额:
$ 24.71万 - 项目类别:
Metabolism and Epigenetic Regulation are Couples in Transdifferentiation and Vascular Regeneration
代谢和表观遗传调控是转分化和血管再生的结合体
- 批准号:
10905167 - 财政年份:2023
- 资助金额:
$ 24.71万 - 项目类别:
Delineating mechanisms underlying the enhanced stability and functionality of CD2- KO Tregs and chimeric antigen receptor (CAR) Tregs and their application in xenotransplantation
描述 CD2-KO Tregs 和嵌合抗原受体 (CAR) Tregs 稳定性和功能增强的机制及其在异种移植中的应用
- 批准号:
10860495 - 财政年份:2023
- 资助金额:
$ 24.71万 - 项目类别:
Spatial Acetyl-CoA metabolism as a regulator of Hallmarks of Aging
空间乙酰辅酶A代谢作为衰老标志的调节剂
- 批准号:
10901039 - 财政年份:2023
- 资助金额:
$ 24.71万 - 项目类别: