SCAPE microscopy for high-speed in-vivo volumetric microscopy in behaving organisms

SCAPE 显微镜用于行为生物体的高速体内体积显微镜

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Despite the growing availability of optical markers of neuronal activity, as well as genetic tools for optical manipulation, current optical microscopy techniques for imaging the intact brain at cellular resolution have approached their limits, particularly in terms of 3D volumetric imaging speeds. The brain and nervous system is inherently 3D, with cortical layers playing specific roles in information processing. Small organisms such as Drosophila melanogaster (fruit fly), Danio rerio (zebrafish) and Caenorhabditis elegans, have become valuable platforms for neuroscience research and genetic manipulation, and offer the chance to capture the entire nervous system of a complete, behaving organism. However, for both rodent brain and small organism microscopy, current techniques are limited to slow volumetric imaging rates, or single-plane acquisition. We recently developed a transformative new approach to high speed 3D microscopy called Swept, Confocally-Aligned Planar Excitation (SCAPE) microscopy. SCAPE was conceived as a way to dramatically improve volumetric imaging speeds, while maintaining a simple optical layout and image acquisition geometry. SCAPE is a hybrid between light-sheet microscopy and laser scanning confocal which overcomes the major speed barriers of both techniques. Recently published in Nature Photonics, SCAPE can image at volume rates 10-100 x faster than laser scanning microscopy or fast light-sheet imaging. We have demonstrated imaging of cellular-level structure and function in both the awake, behaving rodent brain and freely moving Drosophila melanogaster larvae at 10-20 volumes per second (VPS) over large fields of view. A further feature of SCAPE is its simple, single, stationary objective, permitting 3D imaging with no motion at the sample, making it well suited for integration with pattered optogenetic manipulation of cells during high-speed 3D imaging. Having achieved `proof of concept' we now wish to develop SCAPE into a tool for routine use by neuroscientists working in both small organisms, for in-toto imaging of cellular activity and behavior, and in awake, behaving mouse brain. The former will be achieved through development and translation of an improved beta prototypes `1P-SCAPE' system, with development of user friendly acquisition software, data handling and analysis platforms, and ultimately its deployment and support for use in studies of somatosensory integration in adult and larval Drosophila. For mouse brain imaging, we propose to test the limits of SCAPE by exploring two- photon implementation (2P-SCAPE), which will afford deeper penetration imaging into scattering tissues such as the rodent brain.
 描述(由申请人提供):尽管神经元活动的光学标记以及用于光学操作的遗传工具越来越多,但当前以细胞分辨率对完整大脑进行成像的光学显微镜技术已接近其极限,特别是在 3D 体积方面大脑和神经系统本质上是 3D 的,皮质层在信息处理中发挥着特定的作用,例如果蝇、斑马鱼和斑马鱼。秀丽隐杆线虫已成为神经科学研究和基因操作的宝贵平台,并提供了捕获完整的、有行为的生物体的整个神经系统的机会。然而,对于啮齿类动物的大脑和小型生物体的显微镜检查,当前的技术仅限于慢速体积成像。我们最近开发了一种革命性的高速 3D 显微镜新方法,称为扫描共焦平面激发 (SCAPE) 显微镜。 SCAPE 被认为是一种显着提高体积成像速度的方法,同时保持简单的光学布局和图像采集几何形状。SCAPE 是光片显微镜和激光扫描共焦的混合体,克服了这两种技术的主要速度障碍。 Nature Photonics 的 SCAPE 成像速度比激光扫描显微镜或快速光片成像快 10-100 倍。我们已经证明了清醒、行为啮齿动物的细胞水平结构和功能的成像。 SCAPE 的另一个特点是其简单、单一、固定的物镜,可以在大视野范围内以每秒 10-20 体积 (VPS) 的速度对大脑和自由移动的果蝇幼虫进行 3D 成像。 样本的运动,使其非常适合在高速 3D 成像过程中与细胞的图案光遗传学操作集成。在实现“概念验证”后,我们现在希望将 SCAPE 开发成一种供研究小型生物体的神经科学家日常使用的工具。 ,用于细胞活动和行为的整体成像,以及清醒、行为小鼠大脑的成像。前者将通过开发和翻译改进的测试原型“1P-SCAPE”系统来实现,并开发用户友好的采集功能。软件、数据处理和分析平台,以及最终其在成年和幼虫果蝇体感整合研究中的部署和支持。对于小鼠大脑成像,我们建议通过探索双光子实现(2P-SCAPE)来测试 SCAPE 的极限。 ),这将为啮齿动物大脑等散射组织提供更深入的穿透成像。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(8)
Neuromuscular Basis of Drosophila larval rolling escape behavior.
果蝇幼虫滚动逃逸行为的神经肌肉基础。
  • DOI:
  • 发表时间:
    2023-08-24
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cooney, Patricia C;Huang, Yuhan;Li, Wenze;Perera, Dulanjana M;Hormigo, Richard;Tabachnik, Tanya;Godage, Isuru;Hillman, Elizabeth M C;Grueber, Wesley B;Zarin, Aref A
  • 通讯作者:
    Zarin, Aref A
Whole-Volume Clustering of Time Series Data from Zebrafish Brain Calcium Images via Mixture Modeling.
通过混合建模对斑马鱼脑钙图像的时间序列数据进行全体积聚类。
  • DOI:
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen, Hien D;Ullmann, Jeremy F P;McLachlan, Geoffrey J;Voleti, Venkatakaushik;Li, Wenze;Hillman, Elizabeth M C;Reutens, David C;Janke, Andrew L
  • 通讯作者:
    Janke, Andrew L
The spatial and temporal structure of neural activity across the fly brain.
果蝇大脑神经活动的空间和时间结构。
  • DOI:
  • 发表时间:
    2023-09-11
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Schaffer, Evan S;Mishra, Neeli;Whiteway, Matthew R;Li, Wenze;Vancura, Michelle B;Freedman, Jason;Patel, Kripa B;Voleti, Venkatakaushik;Paninski, Liam;Hillman, Elizabeth M C;Abbott, L F;Axel, Richard
  • 通讯作者:
    Axel, Richard
Odorant Receptor Inhibition Is Fundamental to Odor Encoding.
气味受体抑制是气味编码的基础。
  • DOI:
  • 发表时间:
    2020-07-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pfister, Patrick;Smith, Benjamin C;Evans, Barry J;Brann, Jessica H;Trimmer, Casey;Sheikh, Mushhood;Arroyave, Randy;Reddy, Gautam;Jeong, Hyo;Raps, Daniel A;Peterlin, Zita;Vergassola, Massimo;Rogers, Matthew E
  • 通讯作者:
    Rogers, Matthew E
The mesencephalic locomotor region recruits V2a reticulospinal neurons to drive forward locomotion in larval zebrafish.
中脑运动区招募 V2a 网状脊髓神经元来驱动斑马鱼幼虫的向前运动。
  • DOI:
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Carbo;Lapoix, Mathilde;Jia, Xinyu;Thouvenin, Olivier;Pascucci, Marco;Auclair, François;Quan, Feng B;Albadri, Shahad;Aguda, Vernie;Farouj, Younes;Hillman, Elizabeth M C;Portugues, Ruben;Del Bene, Filippo;Thiele, Tod R;Dubuc, Réje
  • 通讯作者:
    Dubuc, Réje
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth M. C. Hillman其他文献

The spatial and temporal structure of neural activity across the fly brain
果蝇大脑神经活动的时空结构
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Evan S Schaffer;Neeli Mishra;Matthew R Whiteway;Wenze Li;Michelle B. Vancura;Jason Freedman;K. Patel;Venkatakaushik Voleti;Liam Paninski;Elizabeth M. C. Hillman;L. Abbott;Richard Axel
  • 通讯作者:
    Richard Axel
An early endothelial cell–specific requirement for Glut1 is revealed in Glut1 deficiency syndrome model mice
Glut1 缺乏综合征模型小鼠揭示了早期内皮细胞对 Glut1 的特异性需求
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8
  • 作者:
    M. Tang;Sarah H. Park;S. Petri;Hang Yu;C. Rueda;E. Abel;Carla Kim;Elizabeth M. C. Hillman;Fanghua Li;Yeojin Lee;L. Ding;S. Jagadish;W. Frankel;D. D. De Vivo;U. Monani
  • 通讯作者:
    U. Monani
Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition
mTOR 抑制可逆转神经胶质瘤引起的兴奋性神经元的改变
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander R. Goldberg;Athanassios Dovas;Daniela Torres;Sohani Das Sharma;Angeliki Mela;E. Merricks;Markel Olabarria;Leila Abrishami Shokooh;Hanzhi T. Zhao;Corina Kotidis;Peter Calvaresi;Ashwin Viswanathan;Matei A. Banu;Aida Razavilar;T. Sudhakar;Ankita Saxena;Cole Chokran;N. Humala;Aayushi Mahajan;Weihao Xu;Jordan B. Metz;Cady Chen;E. Bushong;D. Boassa;Mark H. Ellisman;Elizabeth M. C. Hillman;Guy M. McKhann;B. Gill;Steven S. Rosenfeld;C. Schevon;Jeffrey N. Bruce;Peter A. Sims;Darcy S. Peterka;P. Canoll
  • 通讯作者:
    P. Canoll
Cortex-wide neural dynamics predict behavioral states and provide a neural basis for resting-state dynamic functional connectivity
皮层范围的神经动力学预测行为状态并为静息状态动态功能连接提供神经基础
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Somayeh Shahsavarani;David N. Thibodeaux;Weihao Xu;Sharon H. Kim;Fatema Lodgher;Chinwendu Nwokeabia;Morgan K. Cambareri;Alexis J. Yagielski;Hanzhi T. Zhao;D. Handwerker;J. Gonzalez;P. Bandettini;Elizabeth M. C. Hillman
  • 通讯作者:
    Elizabeth M. C. Hillman
Combined ion beam irradiation platform and 3D fluorescence microscope for cellular cancer research
用于细胞癌症研究的组合离子束照射平台和 3D 荧光显微镜
  • DOI:
    10.1364/boe.522969
  • 发表时间:
    2024-03-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Harken;Naresh Deoli;Citlali Perez Campos;B. Ponnaiya;G. Garty;Grace Sooyeon Lee;M. Casper;Shikhar Dhingra;Wenze Li;Gary Johnson;Sally A. Amundson;Peter Grabham;Elizabeth M. C. Hillman;David J. Brenner
  • 通讯作者:
    David J. Brenner

Elizabeth M. C. Hillman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth M. C. Hillman', 18)}}的其他基金

Cell type atlasing of whole human brains using HOLiS: an optimized pipeline for staining, clearing, imaging, and analysis
使用 HOLiS 对整个人脑进行细胞类型图谱分析:用于染色、透明化、成像和分析的优化流程
  • 批准号:
    10377810
  • 财政年份:
    2021
  • 资助金额:
    $ 50.48万
  • 项目类别:
Characterizing long-range cortical and subcortical dynamics in relation to corticospinal output and motor control
表征与皮质脊髓输出和运动控制相关的长程皮质和皮质下动力学
  • 批准号:
    10224732
  • 财政年份:
    2017
  • 资助金额:
    $ 50.48万
  • 项目类别:
Characterizing long-range cortical and subcortical dynamics in relation to corticospinal output and motor control
表征与皮质脊髓输出和运动控制相关的长程皮质和皮质下动力学
  • 批准号:
    9983207
  • 财政年份:
    2017
  • 资助金额:
    $ 50.48万
  • 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
  • 批准号:
    8320127
  • 财政年份:
    2011
  • 资助金额:
    $ 50.48万
  • 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
  • 批准号:
    8902277
  • 财政年份:
    2011
  • 资助金额:
    $ 50.48万
  • 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
  • 批准号:
    8514742
  • 财政年份:
    2011
  • 资助金额:
    $ 50.48万
  • 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
  • 批准号:
    8222238
  • 财政年份:
    2011
  • 资助金额:
    $ 50.48万
  • 项目类别:
Imaging the neuronal and metabolic basis of resting state connectivity mapping
静息态连接映射的神经元和代谢基础成像
  • 批准号:
    8717740
  • 财政年份:
    2011
  • 资助金额:
    $ 50.48万
  • 项目类别:
ADVANCES IN OPTICS FOR BIOTECHNOLOGY, MEDICINE AND SURGERY CONFERENCE XII
第十二届生物技术、医学和外科光学会议的进展
  • 批准号:
    8062907
  • 财政年份:
    2011
  • 资助金额:
    $ 50.48万
  • 项目类别:
In-vivo optical imaging of neurovascular coupling and cerebral metabolism
神经血管耦合和脑代谢的体内光学成像
  • 批准号:
    8912611
  • 财政年份:
    2008
  • 资助金额:
    $ 50.48万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next Generation Robotic System for Supervised-Autonomous Bowel Anastomosis
用于监督自主肠吻合术的下一代机器人系统
  • 批准号:
    10910494
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
Blood Biomarker Development and Validation in Chronic Traumatic Encephalopathy and Alzheimer's Disease and Alzheimer's Disease Related Dementias
慢性创伤性脑病、阿尔茨海默病和阿尔茨海默病相关痴呆的血液生物标记物开发和验证
  • 批准号:
    10662752
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
A comprehensive platform for low-cost screening and image-guided photodynamic therapy (PDT) of pre-malignant and malignant oral lesions in low resource settings
一个综合平台,用于在资源匮乏的环境中对癌前和恶性口腔病变进行低成本筛查和图像引导光动力治疗 (PDT)
  • 批准号:
    10648426
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了