PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
基本信息
- 批准号:9804726
- 负责人:
- 金额:$ 42.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-05 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdoptionAffinityAnemiaBenchmarkingBindingBinding SitesBiological AssayCRISPR/Cas technologyCell SurvivalCellsChemicalsChemistryChromatinChromosomesClinicalCollaborationsCommunicationCommunitiesCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNADNA BindingDNA DamageDNA RepairDNA Repair PathwayDNA strand breakDataDevelopmentDiseaseDisease modelEventExtramedullary HematopoiesisFollow-Up StudiesFormulationFoundationsFrequenciesGene FrequencyGenesGenetic DiseasesGenetic RecombinationGenomeGenome engineeringGenomicsGlycolatesGoalsHematopoietic stem cellsHemoglobin concentration resultHereditary DiseaseHumanHuman GeneticsHuman GenomeInjectionsIntravenousIntravenous infusion proceduresLeadMeasuresMediatingMendelian disorderMethodsMorphologyMucopolysaccharidosis I HMusMutationNatureNylonsOligonucleotidesPeptide Nucleic AcidsPhenotypePolymersPositioning AttributeProductionPropertyPublishingPurinesReagentReporterResearch PersonnelRiskSickle Cell AnemiaSiteSplenomegalyStructureTechnologyTestingThalassemiaToxic effectTranslationsVertebral columnWorkXPA genebasebeta Globinbeta Thalassemiaclinical applicationclinical developmentclinically relevantcostdeep sequencingdesigndimergene correctiongenome editinghomologous recombinationhuman modelimprovedin uteroin vivoinflammatory markerinhibitor/antagonistinterestknockout geneminimally invasivemonomermouse modelnanoparticlenext generationnovelnucleasenucleic acid-based therapeuticsnucleobasescale upsomatic cell gene editingsynthetic nucleic acidtargeted nucleasestherapeutic genetoolzinc finger nuclease
项目摘要
There is substantial interest in gene editing as a potential means to treat human genetic disorders such as
thalassemia and sickle cell disease. Much effort has been focused on targeted nucleases such as
CRISPR/Cas9 and zinc-finger nucleases (ZFNs), based on work showing that site-directed DNA damage
strongly promotes homologous recombination (HR). However, clinical application of targeted nucleases is
challenged by the risk of off-target cleavage events in the genome. As an alternative, in work recently
published in Nature Communications, the Ly, Saltzman, and Glazer labs have shown that γ-substituted triplex-
forming peptide nucleic acids (PNAs) and donor DNAs delivered intravenously (IV) via poly(lactic-co-glycolic)
acid (PLGA) nanoparticles (NPs) into a mouse model of human β-thalassemia produced almost complete
amelioration of the disease, with clinically relevant β-globin gene correction frequencies in hematopoietic stem
cells (HSCs) of up to 7%. The mice showed alleviation of anemia, improvement in RBC morphologies, and
reversal of splenomegaly and extramedullary hematopoiesis, with extremely low off-target effects in the
genome, a key advantage of this technology. The other key advantage is that the components can be
synthesized chemically and formulated into nanoparticles for simple IV administration. However, synthesis of
γPNAs is complicated and expensive, and they are not commercially available, limiting the ability of
investigators to exploit this technology. In line with RFA-RM-18-024, “Expanding the Human Genome
Engineering Repertoire”, this multi-PI proposal by Ly, Saltzman, and Glazer seeks to advance PNA/NP-based
gene editing by simplifying and scaling up PNA synthesis, by incorporating next generation PNA chemistry to
boost binding affinity, increase selectivity, and enhance potency, and by strategically exploiting cellular DNA
repair pathways. The Specific Aims are: (1) To scale up PNA production and augment DNA binding, in order to
expedite the translation of PNAs for therapeutic gene editing and enable widespread adoption of the
technology. We will devise an enantioselective strategy for scaling up the production of monomers, and we will
synthesize and test γPNAs with modified nucleobases to achieve improved DNA binding properties and to
overcome the homopurine sequence restriction for triplex formation. (2) To develop strategies to manipulate
DNA repair to enhance the efficiency of PNA-mediated gene editing, based on promising preliminary results
with a novel DNA repair inhibitor. (3) To provide a robust platform of assays to evaluate the advancements
from Aims 1-2 and to generalize this approach to multiple genes. We will continue to exploit facile mouse- and
cell-based assays for correction of the human β-globin gene at the IVS2-654 thalassemia mutation. We expect
this work to provide the basis for designing even more potent PNAs applicable to gene editing for many human
genetic disorders.
人们对基因编辑作为治疗人类遗传疾病的潜在手段产生了浓厚的兴趣,例如
地中海贫血和镰状细胞病的研究主要集中在靶向核酸酶上。
CRISPR/Cas9 和锌指核酸酶 (ZFN),基于表明定点 DNA 损伤的研究
强烈促进同源重组(HR)然而,靶向核酸酶的临床应用是。
作为替代方案,最近在工作中面临着基因组脱靶切割事件风险的挑战。
Ly、Saltzman 和 Glazer 实验室发表在《自然通讯》上的论文表明,γ-取代的三链体
形成肽核酸 (PNA) 和供体 DNA 通过聚乳酸-乙醇酸静脉内 (IV) 输送
酸(PLGA)纳米粒子(NPs)进入人类β-地中海贫血小鼠模型中几乎完全产生
通过造血干中临床相关的β-珠蛋白基因校正频率改善疾病
细胞 (HSC) 高达 7% 小鼠表现出贫血减轻、红细胞形态改善以及
逆转脾肿大和髓外造血,脱靶效应极低
基因组,该技术的另一个关键优势是组件可以。
化学合成并配制成纳米颗粒,用于简单的静脉注射。
γPNA 复杂且昂贵,并且无法商业化,限制了其能力
研究人员利用这项技术,符合 RFA-RM-18-024,“扩展人类基因组”。
Engineering Repertoire”,这项由 Ly、Saltzman 和 Glazer 提出的多 PI 提案旨在推进基于 PNA/NP 的技术
通过简化和扩大 PNA 合成、结合下一代 PNA 化学来进行基因编辑
通过战略性地利用细胞 DNA 来增强结合亲和力、提高选择性并增强效力
具体目标是:(1) 扩大 PNA 生产并增强 DNA 结合,以便
加快用于治疗性基因编辑的 PNA 的转化,并促进广泛采用
我们将设计一种对映选择性策略来扩大单体的生产,我们将
合成并测试具有修饰核碱基的 γPNA,以实现改进的 DNA 结合特性并
(2)制定操纵策略
基于有希望的初步结果,DNA 修复可提高 PNA 介导的基因编辑的效率
(3) 提供强大的检测平台来评估进展
从目标 1-2 开始,并将这种方法推广到多个基因,我们将继续利用简单的小鼠和基因。
我们期望通过基于细胞的检测来校正 IVS2-654 地中海贫血突变的人类 β-珠蛋白基因。
这项工作为设计适用于许多人类基因编辑的更有效的 PNA 提供了基础
遗传性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER M GLAZER其他文献
PETER M GLAZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER M GLAZER', 18)}}的其他基金
PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
- 批准号:
10414795 - 财政年份:2019
- 资助金额:
$ 42.11万 - 项目类别:
PNA Nanoparticles for Gene Editing In Vivo
用于体内基因编辑的 PNA 纳米颗粒
- 批准号:
10198735 - 财政年份:2019
- 资助金额:
$ 42.11万 - 项目类别:
Poly(amine-co-ester)s for Targeted Delivery In Vivo of Gene Editing Agents to Bone Marrow and Lung
用于将基因编辑剂体内靶向递送至骨髓和肺的聚(胺-共酯)
- 批准号:
10274829 - 财政年份:2018
- 资助金额:
$ 42.11万 - 项目类别:
Poly(amine-co-ester)s for Targeted Delivery In Vivo of Gene Editing Agents to Bone Marrow and Lung
用于将基因编辑剂体内靶向递送至骨髓和肺的聚(胺-共酯)
- 批准号:
10706300 - 财政年份:2018
- 资助金额:
$ 42.11万 - 项目类别:
Poly(amine-co-ester)s for targeted delivery of gene editing agents to treat cystic fibrosis in animal models: SCGE Disease Models Studies Supplement
用于靶向递送基因编辑剂以治疗动物模型中的囊性纤维化的聚(胺共酯):SCGE 疾病模型研究补充
- 批准号:
10619840 - 财政年份:2018
- 资助金额:
$ 42.11万 - 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
- 批准号:
9981673 - 财政年份:2017
- 资助金额:
$ 42.11万 - 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
- 批准号:
9388067 - 财政年份:2017
- 资助金额:
$ 42.11万 - 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
- 批准号:
10204894 - 财政年份:2017
- 资助金额:
$ 42.11万 - 项目类别:
Novel DNA Repair Inhibitors for Cancer Therapy
用于癌症治疗的新型 DNA 修复抑制剂
- 批准号:
10456727 - 财政年份:2017
- 资助金额:
$ 42.11万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
B7-H3 Targeted Ultrasound Molecular Imaging System for Early Breast Cancer and Metastatic Detection
B7-H3 用于早期乳腺癌和转移检测的靶向超声分子成像系统
- 批准号:
10584161 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Small Molecule Probes for Fluorescence-guided Head and Neck Cancer Surgery
用于荧光引导头颈癌手术的小分子探针
- 批准号:
10644519 - 财政年份:2023
- 资助金额:
$ 42.11万 - 项目类别:
Aptamer tools for dissecting HIV-1 capsid function and identifying accessible, biologically relevant interaction surfaces.
用于剖析 HIV-1 衣壳功能并识别可访问的、生物学相关的相互作用表面的适体工具。
- 批准号:
10655852 - 财政年份:2022
- 资助金额:
$ 42.11万 - 项目类别:
Development of evolutionary technologies to reprogram protein-protein interactions
开发重新编程蛋白质-蛋白质相互作用的进化技术
- 批准号:
10536269 - 财政年份:2022
- 资助金额:
$ 42.11万 - 项目类别:
High-throughput antibody discovery directly from B cells using nanovial technology
使用纳米瓶技术直接从 B 细胞发现高通量抗体
- 批准号:
10324363 - 财政年份:2021
- 资助金额:
$ 42.11万 - 项目类别: