ROBUST AUTOMATIC MULTIMODALITY REGISTRATION
强大的自动多模式注册
基本信息
- 批准号:2008232
- 负责人:
- 金额:$ 20.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-04-01 至 2000-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Adapted from Applicant's Abstract): The goal of this
application was to achieve the capability to routinely perform automatic,
robust, rapid, and accurate multimodality registrations to facilitate
comparisons and interpretations of image data set pairs from a variety of
sources. The specific aims of the application were to 1) research and
develop a quantitative, cost function-based method for automatic
registration of multimodality data sets that has utility in clinical and
biological research and is based on classical information theory, 2) fully
characterize a number of data-related effects on the operation of the
algorithm, and 3) demonstrate the algorithm's application to several diverse
multimodal data sets in radiology and basic neuroscience where warping is
often required for accurate registrations. The registration method proposed
is based on the mutual information cost function (MI) which quantifies the
mutual information content of two data sources. A geometric mapping that
minimizes MI between data sets produces the most spatially correlated, i.e.,
registered, data sets. An optimizer drives the positions of control points
in the homologous data set to effect a mapping between the reference and the
homologous data sets that optimizes MI. Since MI is calculated from gray
values, it is applicable to iso- and multi-modal sets without the need for
preprocessing such as gray level segmentation. The proposed registration
method applies to virtually any combination of data sources, both 2D (e.g.,
autoradiography, electron and light microscopy) and 3D (e.g., CT, MRI, fMRI,
PET, SPECT, MEG, and confocal microscopy). Research design consists of
several methods to extend our current MI-based prototype to automatically
determine the complexity of the registration supported by the data. Three
algorithms for automatic control point selection for warping based on local
MI will be investigated. Several types of geometric inconsistencies will be
systematically studied to elucidate the method's under different conditions.
The effect of data set type and transform degrees of freedom on accuracy
will be studied by measuring the information content in data from different
modalities. Registration accuracy will be validated by use of phantoms;
additionally, data sets from rats and humans will be used as a test bed for
this work. Analysis of additional data including normal and abnormal cases
will demonstrate the efficacy of automated warping registration in the
clinical and basic sciences.
描述(根据申请人的摘要改编):目的
应用是为了实现常规执行自动的能力,
强大,快速,准确的多模式注册以促进
图像数据集对的比较和解释对
来源。 该应用程序的具体目的是1)研究和
开发一种基于定量的基于成本函数的自动方法
在临床和
生物学研究,基于经典信息理论,2)完全
表征了许多与数据相关的影响对
算法和3)演示了该算法在几种不同的
放射学和基本神经科学的多模式数据集
通常需要进行准确的注册。 提出的注册方法
基于量化的相互信息成本函数(MI)
两个数据源的共同信息内容。 一个几何映射
最小化数据集之间的MI会产生最空间相关的MI,即
注册,数据集。 优化器驱动控制点的位置
在同源数据集中,以实现参考和参考的映射
优化MI的同源数据集。 由于MI是根据灰色计算的
值,它适用于ISO和多模式集,而无需
预处理,例如灰度分割。 拟议的注册
方法几乎适用于数据源的任何组合,包括2D(例如,
放射自显影,电子和光学显微镜)和3D(例如CT,MRI,fMRI,
PET,SPECT,MEG和共聚焦显微镜)。 研究设计包括
将当前基于MI的原型扩展到自动的几种方法
确定数据支持的注册的复杂性。 三
基于本地的自动控制点选择的自动控制点选择算法
MI将被调查。 几种类型的几何不一致将是
系统地研究以在不同条件下阐明该方法。
数据集类型和转换自由度对准确性的影响
将通过测量来自不同的数据中的信息内容来研究
方式。 注册精度将通过使用幻象来验证;
此外,来自大鼠和人类的数据集将被用作测试床
这项工作。 分析其他数据,包括正常情况和异常情况
将证明自动翘曲注册的功效
临床和基础科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Raymond Meyer其他文献
Charles Raymond Meyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Raymond Meyer', 18)}}的其他基金
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
- 批准号:
6608879 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
- 批准号:
8445391 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
- 批准号:
8234852 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
Early Estimation of Breat Tumor Response to Therapy
乳腺肿瘤治疗反应的早期估计
- 批准号:
8376470 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
AUTOMATIC 3D REGISTRATION FOR ENHANCED CANCER MANAGEMENT
自动 3D 配准以增强癌症管理
- 批准号:
7116974 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
- 批准号:
7611736 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
Early Estimation of Breat Tumor Response to Therapy
乳腺肿瘤治疗反应的早期估计
- 批准号:
8445392 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
- 批准号:
8376476 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
Automatic Three Dimensional (3D) Registration for Enhanced Cancer Management
自动三维 (3D) 配准以增强癌症管理
- 批准号:
7802144 - 财政年份:2002
- 资助金额:
$ 20.67万 - 项目类别:
相似海外基金
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
ADVANCED COMPREHENSIVE MAGNETIC RESONANCE SOLUTION FOR THE NONINVASIVE CHARACTERIZATION OF HIGH RESOLUTION METABOLIC BIOMARKERS OF RISK IN PATIENTS WITH ALZHEIMER'S DISEASE AND DEMENTIA
先进的综合磁共振解决方案,用于无创表征阿尔茨海默病和痴呆症患者风险的高分辨率代谢生物标志物
- 批准号:
10820517 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
Data Science and Medical Image Analysis Training for Improved Health Care Delivery in Nigeria - DATICAN
数据科学和医学图像分析培训以改善尼日利亚的医疗保健服务 - DATICAN
- 批准号:
10719097 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
BRAIN CONNECTS: Rapid and Cost‐effective Connectomics with Intelligent Image Acquisition, Reconstruction, and Querying
大脑连接:具有智能图像采集、重建和查询功能的快速且经济有效的连接组学
- 批准号:
10663654 - 财政年份:2023
- 资助金额:
$ 20.67万 - 项目类别:
A Highly Multiplexed, Multiomic 3D Mouse Brain Map Using MALDI-IHC
使用 MALDI-IHC 绘制高度多重、多组学 3D 小鼠脑图
- 批准号:
10603396 - 财政年份:2022
- 资助金额:
$ 20.67万 - 项目类别: