Metabolic Mechanisms of Copper-Dependent Neurodegeneration and Excitability in Menkes Disease

门克斯病铜依赖性神经变性和兴奋性的代谢机制

基本信息

  • 批准号:
    10930683
  • 负责人:
  • 金额:
    $ 4.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-06 至 2025-04-05
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Menkes disease is a rare genetic condition in which the disruption of copper homeostasis induces neurodegeneration and other neurological symptoms soon after birth. The underlying mechanisms of Menkes neuropathology remain unclear, but the metabolic changes observed in Menkes disease and the crucial role of mitochondria in neurons point to dysregulation of cellular bioenergetics as a possible factor. Preliminary data in human cells indicates that copper depletion decreases expression of genes regulated by hypoxia induced factor 1 alpha (HIF-1α). HIF-1α is a transcription factor sensitive to metals and oxygen that regulates cellular bioenergetics by switching metabolism from mitochondrial oxidative phosphorylation to glycolysis. Further, these copper depleted cells exhibit increased mitochondrial respiration. Resolving the newly identified role of HIF-1α in regulating mitochondrial function is central to understanding how copper dyshomeostasis elicits neurodegeneration in Menkes disease. Thus, the overall objective of this F31 NRSA application is to test how copper depletion influences the HIF-1α pathway in neurons to regulate cellular metabolism and influence cell excitability and survival. The central hypothesis that will be tested in this proposal is that neuronal copper depletion selectively downregulates transcriptional activity of the HIF-1α pathway to redirect nutrients through mitochondrial respiration rather than glycolysis, rendering cells hyperexcitable due to production of reactive oxygen species by mitochondria and thus susceptible to cell death. In Aim 1, the HIF-1α pathway will be stimulated in copper depleted and control neuroblastoma cells or primary cultured neurons in order to comprehensively assess gene expression, determine binding of HIF-1α to target genes, and quantify mitochondrial respiration and glycolysis in the context of HIF-1α activity. In Aim 2, genetically encoded calcium indicators will be used in primary neuronal cultures from wildtype or neuronal-specific copper depleted mice while stimulating the HIF-1α pathway to assess how copper depletion affects cell excitability and determine the effect of HIF-1α on these phenotypes. Completion of these aims will clarify the metabolic pathways responsive to copper and their effects on neuronal function. The application of this knowledge will inform our understanding, research, and treatment of neuropathology of diseases known to be associated with dysregulated metals and/or metabolism for which there are currently limited therapeutics.
项目摘要 Menkes病是一种罕见的遗传状况,其中铜稳态的破坏会诱导 神经变性和其他神经症状出生后不久。 神经病理学仍然尚不清楚,但是在Menkes疾病中观察到的代谢变化和至关重要的作用 神经元中的线粒体指出细胞生物剂的失调是可能的预先启示数据 人类细胞表明,铜衰减量表受到低氧诱导因子调节的基因 1α(HIF-1α)。 通过将代谢从线粒体氧化磷酸化转换为糖酵解的生物能学。 铜耗尽的细胞表现出增加的mitchonial呼吸。 在调节Mitchondrial功能方面是了解铜dyshomeostasis如何引起的核心 Menkes疾病中的神经变性。 铜的耗竭影响神经元中的HIF-1α途径调节细胞代谢并影响细胞 兴奋性和生存性。 部署有选择地下调HIF-1α途径的转录活性,以通过 线粒体呼吸而不是糖酵解,由于反应性的产生而使细胞过度兴奋 线粒体的氧气,因此在AIM 1中易受细胞死亡。 在铜耗尽并控制神经母细胞瘤细胞或原代培养神经元中刺激 全面评估基因表达,确定HIF-1α与靶基因的结合,然后定量 在HIF-1α活性的背景下,线粒体呼吸和糖酵解。 指标将用于来自野生型或神经元特异性铜的原发性神经元培养物,而小鼠则使用 刺激HIF-1α途径,以评估铜耗尽如何影响细胞兴奋性并确定效果 HIF-1α在表型上的压缩将阐明代谢途径的反应。 铜及其对神经元功能的影响。 已知疾病的神经病理学的研究和治疗 目前治疗药有限的代谢。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alicia R Lane其他文献

Alicia R Lane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alicia R Lane', 18)}}的其他基金

Metabolic Mechanisms of Copper-Dependent Neurodegeneration and Excitability in Menkes Disease
门克斯病铜依赖性神经变性和兴奋性的代谢机制
  • 批准号:
    10462355
  • 财政年份:
    2022
  • 资助金额:
    $ 4.77万
  • 项目类别:

相似国自然基金

肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
  • 批准号:
    82074395
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
  • 批准号:
    81800898
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
  • 批准号:
    31860716
  • 批准年份:
    2018
  • 资助金额:
    39.0 万元
  • 项目类别:
    地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
  • 批准号:
    81803854
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Arlene George F32
阿琳·乔治 F32
  • 批准号:
    10722238
  • 财政年份:
    2024
  • 资助金额:
    $ 4.77万
  • 项目类别:
Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
  • 批准号:
    10495114
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Biophysical Mechanisms of Cortical MicroStimulation
皮质微刺激的生物物理机制
  • 批准号:
    10711723
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Investigational WNT-pathway modulators for the treatment and prevention of drug-resistant seizures
用于治疗和预防耐药性癫痫发作的研究性 WNT 通路调节剂
  • 批准号:
    10725450
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
  • 批准号:
    10725358
  • 财政年份:
    2023
  • 资助金额:
    $ 4.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了