Neural Implant Insertion System using Ultrasonic Vibration to Reduce Tissue Dimpling and Improve Insertion Precision of Floating Arrays in the Neocortex
使用超声波振动的神经植入物插入系统减少组织凹陷并提高新皮质中浮动阵列的插入精度
基本信息
- 批准号:9565293
- 负责人:
- 金额:$ 37.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAmputeesAnimal ExperimentationAwardBRAIN initiativeBlood specimenBrainCell DeathChronicCicatrixCommunitiesCouplingCraniotomyCustomDevelopmentDevicesElectrodesElectronicsEngineeringEnteral FeedingEquipment MalfunctionForeign BodiesGoalsHemorrhageHumanImplantImplanted ElectrodesInflammationLegal patentManualsMedicalMedical ResearchMethodsMicroelectrodesMotionNeocortexNeuronsNeurosciencesNeurosciences ResearchParaplegiaPatient-Focused OutcomesPerformancePeripheral Nervous SystemPhasePrimatesProceduresProprioceptionProsthesisResearchResearch PersonnelResearch Project GrantsResolutionRiskRodentSalesSeriesSiteSmall Business Innovation Research GrantSocietiesSpeedSystemTechnologyTestingTissuesTransducersTraumaUltrasonicsUnited States National Institutes of HealthValidationbasebrain machine interfaceclinical applicationcommercializationdensityextracellularimplantationimprovedin vivoinnovationmeetingsmotor controlneural implantneurotransmissionnonhuman primatenovelpre-clinical researchrelating to nervous systemresponsesuccesstissue traumatoolverification and validationvibration
项目摘要
This Phase I SBIR develops and tests a system for vibrating neural implant floating arrays during insertion to
reduce insertion force, dimpling, tissue damage, and bleeding. The approach will allow precise insertion of
electrode shanks into shallow cortical layers. This proposal is in response to PAR-15-091 BRAIN Initiative:
Development, Optimization, and Validation of Novel Tools and Technologies for Neuroscience Research.
Problem to be solved: Penetrating electrode arrays provide direct access to neural signals across the central
and peripheral nervous system with high spatial resolution. Sophisticated floating array implants may
revolutionize treatment for a range of medical conditions, including prosthetic motor control and proprioception
for amputees, and brain-machine interfacing for paraplegics. Unfortunately, implantation of floating arrays,
which are commonly comprised of numerous high-density electrode shanks, applies forces to neural tissue
resulting in substantial compression (dimpling). This dimpling often prohibits uniform shank insertion, increases
trauma and bleeding at the implant site and may accentuate glial scaring, neural cell death, and device failure.
Current insertion procedures for high-density floating arrays employ high-speed and/or pneumatic insertion
systems or manual insertion, which can cause significant bleeding and tissue damage. This project develops
an Ultrasonic Precision Insertion system for Floating Arrays (UPIND-FA) to reduce insertion force, tissue
dimpling and damage, ultimately enhancing electrode placement accuracy and functionality.
Hypothesis: Ultrasonic vibration of high-density neural electrode floating arrays (FAs) will reduce dimpling to
facilitate complete insertion of all electrode shanks without requiring advancement beyond target depth
(overshoot), reduce Foreign Body Response (FBR) due to insertion trauma and improve electrode
performance, as compared to non-vibrated and/or high-speed insertion (i.e., Commercial pneumatic inserter).
Aim 1: Development of UPIND-FA for insertion of FAs, with minimized dimpling and insertion force, and easy
release. Acceptance Criteria. >70% reduction in tissue dimpling and insertion force compared to non-vibrated
insertion; improved insertion accuracy (±100 μm of target depth) of all electrode shanks at shallow depths
(<1000 μm) over a commercial insertion; <50 μm perturbation of FA body during release post-insertion. Aim 2:
Show that UPIND-FA successfully inserts floating arrays in vivo without electrode damage. Acceptance
Criteria: >70% reduction in dimpling compared to control insertion; complete insertion of all electrode shanks
without target depth overshoot; significant improvement in array performance and reduction in brain FBR
(p<0.05). Aim 3: Confirm UPIND-FA array insertion in vivo in a gyrencephalic neocortex significantly reduces
tissue damage and brain FBR over non-vibrated and the commercial insertions. Acceptance Criteria: >70%
dimpling reduction over control insertion; complete insertion of all electrode shanks without target depth
overshoot, and significant (p<0.05) reduction in brain FBR compared to the commercial pneumatic inserter.
第一阶段 SBIR 开发并测试了一种系统,用于在插入神经植入物浮动阵列期间振动神经植入物浮动阵列。
减少插入力、凹陷、组织损伤和出血。该方法将允许精确插入。
该提案是为了响应 PAR-15-091 BRAIN Initiative:
神经科学研究新工具和技术的开发、优化和验证。
待解决的问题:穿透电极阵列可以直接访问中枢神经信号
和具有高空间分辨率的周围神经系统可能。
彻底改变一系列医疗状况的治疗,包括假肢运动控制和本体感觉
不幸的是,植入浮动阵列,用于截肢者和脑机接口。
通常由许多高密度电极柄组成,向神经组织施加力
导致显着的压缩(凹陷),这种凹陷通常会阻碍柄部的均匀插入,并增加。
植入部位的创伤和出血,可能会加剧神经胶质疤痕、神经细胞死亡和装置故障。
当前高密度浮动阵列的插入程序采用高速和/或气动插入
系统或手动插入,这可能会导致严重出血和组织损伤。
用于浮动阵列的超声波精密插入系统 (UPIND-FA),可减少插入力、组织
凹痕和损坏,最终提高电极放置精度和功能。
假设:高密度神经电极浮动阵列(FA)的超声波振动将减少凹陷
促进所有电极柄的完全插入,无需前进超出目标深度
(过冲),减少由于插入创伤引起的异物反应(FBR)并改善电极
与非振动和/或高速插入(即商用气动插入器)相比。
目标 1:开发用于插入 FA 的 UPIND-FA,具有最小化的凹痕和插入力,并且易于使用
与非振动相比,组织凹陷和插入力减少 >70%。
插入;提高所有电极柄在浅深度的插入精度(目标深度 ±100 μm)
(<1000 μm) 超过商业插入;插入后释放期间 FA 体的扰动<50 μm。
表明 UPIND-FA 成功将浮动阵列插入体内,且没有电极损坏。
标准:与所有电极柄完全插入相比,凹痕减少 >70%;
无目标深度超调;显着改善阵列性能并降低大脑 FBR
(p<0.05):确认 UPIND-FA 阵列在脑环新皮质中的体内插入显着。
与非振动和商业插入相比,组织损伤和脑 FBR 验收标准:>70%。
控制插入时的凹痕减少;完全插入所有电极柄而无目标深度
与商用气动插入器相比,大脑 FBR 出现过冲和显着(p<0.05)降低。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maureen L. Mulvihill其他文献
Maureen L. Mulvihill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maureen L. Mulvihill', 18)}}的其他基金
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10552838 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
开发声学植入保护系统以提高神经接口的性能和寿命
- 批准号:
10763996 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
ICORPs Support for Development of an Acoustic Implant Protection System to Improve Performance and Longevity of Neural Interfaces
ICORP 支持声学植入保护系统的开发,以提高神经接口的性能和寿命
- 批准号:
10739498 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Expansion of Engineering and Testing for 'Locally Targeted Acoustic Neuropathy Medication Delivery System for Pain Relief without Large Systemic Doses and Side Effects'
扩大“用于缓解疼痛且无大全身剂量和副作用的局部靶向听神经病药物输送系统”的工程和测试
- 批准号:
9933278 - 财政年份:2019
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10708957 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10438928 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10611153 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
9925224 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Microelectrode Array Insertion System using Ultrasonic Vibration to Improve Insertion Mechanics, Reduce Tissue Dimpling and Trauma, and Improve Placement Precision in the Neocortex
使用超声波振动的微电极阵列插入系统改善插入力学,减少组织凹陷和创伤,并提高新皮质的放置精度
- 批准号:
10021212 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
Active Disposable Cap for Endoscope Tip Stabilization and Complete Visualization and Dissection of Serrated Sessile Polyps
用于内窥镜尖端稳定以及锯齿状无蒂息肉的完整可视化和解剖的主动一次性帽
- 批准号:
10324810 - 财政年份:2018
- 资助金额:
$ 37.85万 - 项目类别:
相似国自然基金
面向膝上截肢者融合智能下肢假肢的新型外骨骼机器人关键技术研究
- 批准号:61803272
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于无声语音及肌电信息融合的多功能假肢控制研究
- 批准号:61203209
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ethical Considerations in Animal Study Translation
动物研究翻译中的伦理考虑
- 批准号:
10790093 - 财政年份:2022
- 资助金额:
$ 37.85万 - 项目类别:
Microbiome and Innate Immunity with Percutaneous Osseointegrated Prostheses
经皮骨整合假体的微生物组和先天免疫
- 批准号:
9354204 - 财政年份:2015
- 资助金额:
$ 37.85万 - 项目类别:
Microbiome and Innate Immunity with Percutaneous Osseointegrated Prostheses
经皮骨整合假体的微生物组和先天免疫
- 批准号:
9133179 - 财政年份:2015
- 资助金额:
$ 37.85万 - 项目类别:
Implantable Myoelectric Recording Array for Control of Prostheses
用于控制假肢的植入式肌电记录阵列
- 批准号:
8058969 - 财政年份:2011
- 资助金额:
$ 37.85万 - 项目类别:
Implantable Myoelectric Recording Array for Control of Prostheses
用于控制假肢的植入式肌电记录阵列
- 批准号:
8463289 - 财政年份:2011
- 资助金额:
$ 37.85万 - 项目类别: