Deciphering the role of Lmod2 in cardiac muscle and in dilatedcardiomyopathy
解读 Lmod2 在心肌和扩张型心肌病中的作用
基本信息
- 批准号:10917836
- 负责人:
- 金额:$ 56.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:Actin-Binding ProteinActinsActomyosinAffectAntisense OligonucleotidesBindingBiochemistryCardiacCardiac MyocytesCardiomyopathiesCellular biologyClinicalComplementary DNADataDilated CardiomyopathyDiseaseEtiologyFamilyFamily memberFrameshift MutationFunctional disorderFundingFutureGene FamilyGenerationsGenesGeneticGoalsHandHeartHeart failureHumanImpairmentIntestinesKnock-outKnockout MiceLeadLengthLinkMaintenanceMechanicsMediatingMessenger RNAMicrofilamentsMolecular BiologyMusMuscleMuscle ContractionMuscle WeaknessMuscle functionMutationMyocardiumMyopathyNemaline MyopathiesNeonatalNonsense MutationPatientsPhysiologicalPlayPredispositionProcessProtein Binding DomainProtein FamilyProtein IsoformsProtein TruncationProteinsRNA SplicingRegulationRoleSkeletal MuscleSmooth MuscleStructureSyndromeTerminator CodonTherapeutic InterventionThin FilamentTranscriptTropomyosinWorkclinically relevantdesigndisease-causing mutationheart functionhuman diseasehuman modelimprovedin vitro Assayin vivoinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesinsightinterdisciplinary approachmRNA Decaymouse modelmutantneonatenoveloverexpressionprematurepreventprotein expressionspatial relationshiptool
项目摘要
PROJECT SUMMARY
Effective contractile force in muscle requires the proper assembly, regulation, and activation of actin-containing
thin filaments. Leiomodins (Lmods) are a family of actin-binding proteins that regulate assembly of actin
filaments through a single tropomyosin-binding and multiple actin-binding domains. We previously discovered
that both knockout and overexpression of the cardiac predominant isoform (Lmod2) alters the lengths of thin
filaments in vivo and results in cardiomyopathy. Our extensive preliminary data suggest that Lmod2 impacts
contractile function - independent of actin-thin filaments length regulation. With a plethora of unique
experimental tools in hand, the goal of this proposal is to definitively determine the mechanisms of how
mutations in LMOD2 lead to heart failure.
It is becoming increasingly clear that the Lmod family of proteins play a critical role in muscle function;
mutations in any of the three LMOD isoforms lead to debilitating human diseases. In this proposal, we describe
the first known human mutation in LMOD2. This mutation leads to severe neonatal dilated cardiomyopathy. All
LMOD-linked diseases have the common underlying pathophysiology of severe muscle weakness due to
reduced contractility. Most of the disease-causing mutations in the LMOD gene family are nonsense or
frameshift mutations predicted to result in expression of truncated proteins. However, in nearly all cases of
disease little to no LMOD protein is expressed. Extensive preliminary data suggests that nonsense-mediated
mRNA decay underlies the loss of mutant LMOD2 protein, which we can restore using LMOD2-specific
antisense oligonucleotides.
We hypothesize that Lmod2 is a multifunctional protein that influences cardiac contractility through
maintaining proper thin filament lengths and positively effecting activation of the thin filament. We propose a
multidisciplinary approach utilizing a unique combination of in vitro assays, patient-specific induced pluripotent
stem cell-derived cardiomyocytes (iPSC-CMs), and novel models of human disease to accomplish two Specific
Aims focused on determining: 1) the fundamental function(s) of Lmod2, particularly how Lmod2 regulates thin
filament assembly and what role it has in cardiac contractility, and 2) why human mutations in LMOD2 lead to a
lack of protein expression, how loss of protein leads to disease, and whether restoring full-length or truncated
LMOD2 can prevent (rescue) the onset of cardiomyopathy. Elucidating the in vivo function(s) of Lmod2 will
provide critical missing links in our understanding of muscle contraction. In addition, these studies will have a
broad impact on understanding the etiology and potential treatments of a spectrum of diseases that result from
mutations in the LMOD family of genes, as well as other diseases that involve nonsense-mediated mRNA
decay of essential proteins.
项目摘要
肌肉中有效的收缩力需要适当的含肌动蛋白的组装,调节和激活
细丝。 Leiomodins(LMODS)是调节肌动蛋白组装的肌动蛋白结合蛋白家族
通过单个肌球蛋白结合和多个肌动蛋白结合域的细丝。我们以前发现了
心脏主要同工型(LMOD2)的基因敲除和过表达都改变了薄的长度
体内细丝并导致心肌病。我们广泛的初步数据表明LMOD2会影响
收缩功能 - 独立于肌动蛋白 - 丝状长度调节。有很多独特的
手头的实验工具,该提案的目的是确定确定如何的机制
LMOD2中的突变导致心力衰竭。
越来越清楚的是,LMOD的蛋白质家族在肌肉功能中起着至关重要的作用。
三种LMOD同工型中的任何一个中的突变导致人类疾病使人衰弱。在此提案中,我们描述
LMOD2中的第一个已知人类突变。这种突变导致严重的新生儿扩张性心肌病。全部
LMOD连接疾病具有严重肌肉无力的常见的基础病理生理学
降低收缩力。 LMOD基因家族中大多数引起疾病的突变是胡说八道或
预测将导致截短的蛋白质表达的移码突变。但是,在几乎所有情况下
疾病几乎没有表达LMOD蛋白。广泛的初步数据表明,废话介导
mRNA衰变是突变型LMOD2蛋白损失的基础,我们可以使用LMOD2特异
反义寡核苷酸。
我们假设LMOD2是一种多功能蛋白,可通过
保持适当的细丝长度,并积极影响细丝的激活。我们提出了一个
多学科方法利用体外测定的独特组合,特定于患者诱导的多能
干细胞衍生的心肌细胞(IPSC-CM)和人类疾病的新型模型
旨在确定的目的:1)LMOD2的基本功能,特别是LMOD2如何调节薄
细丝组件及其在心脏收缩性中的作用以及2)为什么人类突变在LMOD2中导致A
缺乏蛋白质表达,蛋白质的丧失如何导致疾病以及恢复全长还是截断
LMOD2可以预防(救援)心肌病的发作。阐明LMOD2的体内函数将
在我们对肌肉收缩的理解中提供关键的缺失联系。此外,这些研究将有一个
对了解一系列疾病的病因和潜在治疗的广泛影响
LMOD基因家族中的突变以及其他涉及废话介导的mRNA的疾病
必需蛋白质的衰减。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carol C Gregorio其他文献
Carol C Gregorio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carol C Gregorio', 18)}}的其他基金
Deciphering the roles of FXR1 in health and myopathy
解读 FXR1 在健康和肌病中的作用
- 批准号:
10888822 - 财政年份:2022
- 资助金额:
$ 56.14万 - 项目类别:
Regulation of the actin filament pointed end dynamics in health and disease
健康和疾病中肌动蛋白丝尖端动态的调节
- 批准号:
9310099 - 财政年份:2017
- 资助金额:
$ 56.14万 - 项目类别:
Regulation of the actin filament pointed end dynamics in health and disease
健康和疾病中肌动蛋白丝尖端动态的调节
- 批准号:
10387989 - 财政年份:2017
- 资助金额:
$ 56.14万 - 项目类别:
Deciphering the role of Lmod2 in thin filament length regulation and dilated cardiomyopathy
解读 Lmod2 在细丝长度调节和扩张型心肌病中的作用
- 批准号:
9039137 - 财政年份:2015
- 资助金额:
$ 56.14万 - 项目类别:
Deciphering the role of Lmod2 in cardiac muscle and in dilated cardiomyopathy
解读 Lmod2 在心肌和扩张型心肌病中的作用
- 批准号:
10331321 - 财政年份:2015
- 资助金额:
$ 56.14万 - 项目类别:
Deciphering the role of the RNA-binding protein, FXR1, in cardiac muscle assembly
破译 RNA 结合蛋白 FXR1 在心肌组装中的作用
- 批准号:
8431740 - 财政年份:2012
- 资助金额:
$ 56.14万 - 项目类别:
Deciphering the role of the RNA-binding protein, FXR1, in cardiac muscle assembly
破译 RNA 结合蛋白 FXR1 在心肌组装中的作用
- 批准号:
8628167 - 财政年份:2012
- 资助金额:
$ 56.14万 - 项目类别:
Deciphering the role of the RNA-binding protein, FXR1, in cardiac muscle assembly
破译 RNA 结合蛋白 FXR1 在心肌组装中的作用
- 批准号:
8816117 - 财政年份:2012
- 资助金额:
$ 56.14万 - 项目类别:
Deciphering the role of the RNA-binding protein, FXR1, in cardiac muscle assembly
破译 RNA 结合蛋白 FXR1 在心肌组装中的作用
- 批准号:
8258594 - 财政年份:2012
- 资助金额:
$ 56.14万 - 项目类别:
相似海外基金
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 56.14万 - 项目类别:
In utero rescue of cleft palate using maternal administration of folic acid
使用叶酸在子宫内挽救腭裂
- 批准号:
10646021 - 财政年份:2023
- 资助金额:
$ 56.14万 - 项目类别:
Molecular Determinants of Kidney Podocyte Architecture in Health, Injury, and Recovery
健康、损伤和恢复中肾足细胞结构的分子决定因素
- 批准号:
10659239 - 财政年份:2022
- 资助金额:
$ 56.14万 - 项目类别:
Host Ca2+, actin, and ATP production in rickettsia-endothelial cell dysfunction
立克次体内皮细胞功能障碍中宿主 Ca2、肌动蛋白和 ATP 的产生
- 批准号:
10659249 - 财政年份:2022
- 资助金额:
$ 56.14万 - 项目类别:
The mechanism of cell size regulation by polycystins
多囊蛋白调节细胞大小的机制
- 批准号:
10609393 - 财政年份:2022
- 资助金额:
$ 56.14万 - 项目类别: