Reliable Seizure Prediction Using Physiological Signals and Machine Learning

使用生理信号和机器学习进行可靠的癫痫发作预测

基本信息

  • 批准号:
    9238808
  • 负责人:
  • 金额:
    $ 61.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-15 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): For most individuals living with epilepsy, seizures are relatively infrequent events occupying a small fraction of their life. Despite spending as little a 0.01% of their lives having seizures (typically only minutes per month), people with epilepsy take anti-epileptic drugs (AED) daily, suffer AED related side effects, and spend their lives dreading when the next seizure will strike. The apparent randomness of seizures is associated with significant psychological consequences. In addition, despite daily AED approximately 1/3 of patients continue to have seizures. We hypothesize that epilepsy can be more effectively treated, both the seizures and their psychological impact, by providing patients with real-time seizure forecasting. Periods of low seizure probability would not require AEDs, or at least lower doses of AEDs, thus reducing AED exposure and their side effects. Periods of high seizure probability may respond to acute AED and patients could alter their activities to avoid injury. Patients would be empowered to manage their medications and life activities using reliable seizure forecasts. In this grant we investigate the hypothesis that seizures are predictable events, and pursue accurate, clinically relevant seizure forecasting using recent advances in support vector machines (SVM), data-analytic models, and Universum-SVM applied to continuous intracranial EEG (iEEG) in focal canine epilepsy. This is an initial step in establishin a new treatment paradigm for focal epilepsy, whereby the probability of seizure occurrence is continuously tracked for patient warning and intelligent responsive therapies. Naturally occurring focal canine epilepsy is an excellent model for investigation of seizure forecasting because of the clinical and electrophsyiological similarity to focal human epilepsy. This study provides a unique opportunity to study seizure forecasting in naturally occurring canine epilepsy under uniform conditions (the same environment). Importantly, dogs are large enough to accommodate devices designed for human use. The hypotheses driving this proposal are that focal seizures are not random events and there are brain states associated with low or high probability of seizure occurrence, and that these states can be reliably classified using machine learning approaches (SVM & Universum-SVM) that combine features from iEEG, behavioral state tracking, and electrocardiogram (ECG) heart rate variability. The goal of this proposal is to develop reliable seizure forecasting (when possible) and improved understanding (data characterization) when good forecasting is not possible.
 描述(由申请人提供):对于大多数癫痫患者来说,癫痫发作是相对罕见的事件,只占其生命的一小部分,尽管癫痫患者一生中只有 0.01% 的时间发生癫痫发作(通常每月只有几分钟)。每天服用抗癫痫药物 (AED),遭受与 AED 相关的副作用,并且一生都在担心下一次癫痫发作的时间。癫痫发作的明显随机性与显着的心理相关。此外,尽管每天使用 AED,仍有大约 1/3 的患者继续出现癫痫发作,我们希望通过为患者提供实时癫痫发作预测来更有效地治疗癫痫发作及其心理影响。癫痫发作概率不需要 AED,或者至少需要较低剂量的 AED,从而减少 AED 暴露及其副作用。癫痫发作概率高的时期可能会对急性 AED 产生反应,并且患者可以改变其活动以避免受伤。他们的在这项资助中,我们研究了癫痫发作是可预测事件的假设,并利用支持向量机 (SVM)、数据分析模型和 Universum-SVM 的最新进展来追求准确的、临床相关的癫痫发作预测。应用于局灶性犬癫痫的连续颅内脑电图(iEEG),这是建立局灶性癫痫新治疗模式的第一步,可以持续跟踪癫痫发作的概率,以向患者发出警告并进行智能响应治疗。自然发生的犬局灶性癫痫是研究癫痫发作预测的绝佳模型,因为其临床和电生理学与人类局灶性癫痫相似,这项研究为研究统一条件(相同环境)下自然发生的犬癫痫的癫痫发作预测提供了独特的机会。重要的是,狗足够大,可以容纳专为人类使用而设计的设备,推动这一提议的假设是局灶性癫痫发作不是随机事件,并且存在与癫痫发生的低或高概率相关的大脑状态,并且这些状态可以是随机的。使用结合了 iEEG、行为状态跟踪和心电图 (ECG) 心率变异性的机器学习方法(SVM 和 Universum-SVM)进行可靠分类。 制定可靠的癫痫发作预测(如果可能),并在无法进行良好预测时提高理解(数据特征)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory A Worrell其他文献

Thalamic stimulation induced changes in effective connectivity
丘脑刺激引起有效连接的变化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Gregg;G. Valencia;Harvey Huang;B. Lundstrom;Jamie J. Van Gompel;Kai J. Miller;Gregory A Worrell;Dora Hermes
  • 通讯作者:
    Dora Hermes
Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像
Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory --manuscript Draft-- Powered by Editorial Manager® and Produxion Manager® from Aries Systems Corporation Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory
人体内嗅区和海马体的直接电刺激会损害记忆力——手稿草稿——由 Aries Systems Corporation 的Editorial Manager® 和 Produxion Manager® 提供技术支持 人体内嗅区和海马体的直接电刺激会损害记忆力
  • DOI:
    10.1016/j.knosys.2023.111358
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua J. Jacobs;Joshua J. Jacobs;Sang Ah Miller;Tom Lee;Andrew J Coffey;Michael R Watrous;A. Sperling;Gregory Sharan;Brent Worrell;Bradley Berry;Barbara Lega;Kathryn Jobst;Robert E Davis;Sameer A Gross;Youssef Sheth;Sandhitsu R Ezzyat;Joel Das;Richard Stein;Michael J Gorniak;Daniel S Kahana;Rizzuto;Jonathan F. Miller;Sang Ah Lee;Tom Coffey;Andrew J. Watrous;M. Sperling;A. Sharan;Gregory A Worrell;Brent M. Berry;B. Lega;B. Jobst;Kathryn A. Davis;Robert E. Gross;S. Sheth;Youssef Ezzyat;Sandhitsu R. Das;J. Stein;R. Gorniak;M. Kahana;D. Rizzuto
  • 通讯作者:
    D. Rizzuto
Functional and anatomical connectivity predict brain stimulation’s mnemonic effects
功能和解剖连接预测大脑刺激的助记效果
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Youssef Ezzyat;J. Kragel;E. Solomon;B. Lega;Joshua P. Aronson;Barbara C Jobst;Robert E. Gross;Michael R. Sperling;Gregory A Worrell;Sameer A. Sheth;P. Wanda;D. Rizzuto;M. Kahana
  • 通讯作者:
    M. Kahana
Frontal Lobe Epilepsy
额叶癫痫
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lily C. Wong;Gregory A Worrell
  • 通讯作者:
    Gregory A Worrell

Gregory A Worrell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory A Worrell', 18)}}的其他基金

Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    10518240
  • 财政年份:
    2022
  • 资助金额:
    $ 61.48万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    10629373
  • 财政年份:
    2022
  • 资助金额:
    $ 61.48万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9972970
  • 财政年份:
    2015
  • 资助金额:
    $ 61.48万
  • 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
  • 批准号:
    9445497
  • 财政年份:
    2015
  • 资助金额:
    $ 61.48万
  • 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
  • 批准号:
    9921573
  • 财政年份:
    2015
  • 资助金额:
    $ 61.48万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8234974
  • 财政年份:
    2009
  • 资助金额:
    $ 61.48万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8053265
  • 财政年份:
    2009
  • 资助金额:
    $ 61.48万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    8448247
  • 财政年份:
    2009
  • 资助金额:
    $ 61.48万
  • 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
  • 批准号:
    7653568
  • 财政年份:
    2009
  • 资助金额:
    $ 61.48万
  • 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
  • 批准号:
    6832791
  • 财政年份:
    2004
  • 资助金额:
    $ 61.48万
  • 项目类别:

相似国自然基金

基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
  • 批准号:
    82274368
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
  • 批准号:
    82273739
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 61.48万
  • 项目类别:
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
  • 批准号:
    10592000
  • 财政年份:
    2023
  • 资助金额:
    $ 61.48万
  • 项目类别:
PA TH2Caregiving: Data-Driven Digital Engagement to Assess and Address the Needs of Family Caregivers
PA TH2Caregiving:数据驱动的数字参与,评估和满足家庭护理人员的需求
  • 批准号:
    10598028
  • 财政年份:
    2023
  • 资助金额:
    $ 61.48万
  • 项目类别:
A closed-loop gravity infusion control device
一种闭环重力输液控制装置
  • 批准号:
    10384629
  • 财政年份:
    2022
  • 资助金额:
    $ 61.48万
  • 项目类别:
Modeling Multi-Source Data in Hodgkin Lymphoma
霍奇金淋巴瘤的多源数据建模
  • 批准号:
    10441776
  • 财政年份:
    2022
  • 资助金额:
    $ 61.48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了