Genetic circuitry governing heart growth and repair
控制心脏生长和修复的遗传电路
基本信息
- 批准号:10565925
- 负责人:
- 金额:$ 55.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdrenergic ReceptorAdultAnimalsApplications GrantsB-Cell ActivationB-Cell Lymphoma 6 ProteinBCL6 geneBirthCardiacCardiac MyocytesCell CycleCell Cycle ArrestCell Cycle RegulationChemicalsClinical TreatmentDataDevelopmentEvolutionGenesGeneticGenetic ModelsGrowthHeartHeart DiseasesHeart failureHeterocephalusHumanImageInjuryKnowledgeLightLoss of HeterozygosityMammalsMethodsMicroscopyMole RatsMusMutant Strains MiceMyocardial InfarctionNerveNewborn InfantPathway interactionsPatientsPhenotypePhylogenyPhysiologicalProcessProliferatingPublishingReceptor ActivationRegenerative capacityRegulationReportingRepressionRodentRoleScienceSignal TransductionStainsThermogenesisThyroid Hormone ReceptorThyroid HormonesTissuesTranscription RepressorUnited StatesUp-RegulationViral VectorWeightWithdrawalWorkZebrafishcardiac regenerationcardiac repaircoronary fibrosisdifferential expressionexperimental studyheart dimension/sizeheart functionhormonal signalsimprovedinhibitorinjury and repairinsightischemic injurymortalitymouse geneticsmutantmyocardial injurynovelorgan regenerationpostnatalregeneration potentialregenerative repairrepairedresponse to injuryself-renewalsynergismtranscription factortranscriptome sequencingtreatment strategy
项目摘要
Project Summary/Abstract
Current available clinical treatments greatly reduced the acute mortality of myocardial infarction. However, lost
cardiomyocytes during myocardial injury still cannot be replenished, leading to a steady increase of heart
failure patients. In contrast, adult zebrafish and newborn mammals are capable of robust cardiac regeneration.
This process has been shown to rely on proliferation of preexisting cardiomyocytes after injury. In rodents,
such an ability is lost within the first week after birth when the majority of cardiomyocytes undergo permanent
cell-cycle arrest. However, the physiological triggers of this transition remain largely unknown. Our recently
published work suggests that activation of thermogenic pathways during the acquisition of endothermy in
ontogeny and phylogeny may cause a loss of cardiomyocyte proliferative and regenerative capacity (Hirose et
al., 2019 Science). Following this direction, we discover that increases of neurohormonal activities associated
with postnatal thermogenesis drive cardiomyocyte cell-cycle exit, at least in part by turning on B cell lymphoma
6 (Bcl6), a transcription factor previously unappreciated in the heart field. Moreover, Bcl6 is also identified in
our RNA-seq analysis of all 1179 annotated mouse transcription factors as one of the top candidates that may
induce postnatal loss of cardiac regenerative potential. Intriguingly, cardiac expression of Bcl6 increases 19
folds after birth in mice but not in naked mole-rats (Heterocephalus glaber), a poikilothermic rodent. The
function of Bcl6 in cardiomyocytes have never been reported. Our preliminary data show that cardiomyocyte-
specific deletion of Bcl6 in mice leads to enhanced cardiomyogenesis both in heart growth and after ischemic
injury. We further identify a putative direct target gene of Bcl6, and demonstrate its major contribution to the
phenotypes through genetic rescue experiments in mice. Based on these results, this grant proposal will apply
a novel method that integrates whole-heart clearing, immunostaining and volume imaging by light-sheet
microscopy to accurately assess the total cardiomyocyte number, and exploit mouse genetic models to
elucidate the functions of Bcl6 and its downstream target in cardiomyocyte cell-cycle control during postnatal
heart growth and adult myocardial injury repair. The regulation of Bcl6 in ontogeny and its expression in
phylogeny will be further investigated to understand whether and how its expression increases in parallel with
the development and evolution of endothermy. Altogether, this work will yield significant knowledge about the
physiological brake of cardiac regeneration, and may offer novel treatment strategies to enhance heart
regenerative repair in adult mammals.
项目概要/摘要
目前可用的临床治疗大大降低了心肌梗塞的急性死亡率。然而,失去了
心肌损伤时心肌细胞仍无法得到补充,导致心率持续升高
失败患者。相比之下,成年斑马鱼和新生哺乳动物具有强大的心脏再生能力。
该过程已被证明依赖于损伤后先前存在的心肌细胞的增殖。在啮齿类动物中,
这种能力在出生后第一周内就会丧失,此时大多数心肌细胞会经历永久性的转变。
细胞周期停滞。然而,这种转变的生理触发因素仍然很大程度上未知。我们最近
已发表的研究表明,在获得吸热过程中产热途径的激活
个体发育和系统发育可能导致心肌细胞增殖和再生能力丧失(Hirose 等
等人,2019 年《科学》)。沿着这个方向,我们发现神经激素活动的增加与
产后产热驱动心肌细胞细胞周期退出,至少部分是通过开启 B 细胞淋巴瘤
6 (Bcl6),一种以前在心脏领域未被重视的转录因子。此外,Bcl6 还被鉴定为
我们对所有 1179 个带注释的小鼠转录因子进行 RNA-seq 分析,将其视为可能的最佳候选因子之一
导致出生后心脏再生潜力的丧失。有趣的是,Bcl6 的心脏表达增加 19
小鼠出生后会折叠,但裸鼹鼠(Heterocephalus glaber)(一种变温啮齿动物)则不会。这
Bcl6在心肌细胞中的功能尚未见报道。我们的初步数据表明,心肌细胞
小鼠体内 Bcl6 的特异性缺失可增强心脏生长过程中和缺血后的心肌生成
受伤。我们进一步确定了 Bcl6 的假定直接靶基因,并证明了其对
通过小鼠基因拯救实验研究表型。根据这些结果,该拨款提案将适用
一种集全心透明化、免疫染色和光片体积成像于一体的新方法
显微镜准确评估心肌细胞总数,并利用小鼠遗传模型
阐明 Bcl6 及其下游靶标在产后心肌细胞周期控制中的功能
心脏生长和成人心肌损伤修复。 Bcl6在个体发育中的调控及其在体内的表达
将进一步研究系统发育,以了解其表达是否以及如何与
吸热的发展和演变。总而言之,这项工作将产生关于以下方面的重要知识:
心脏再生的生理制动,并可能提供增强心脏功能的新治疗策略
成年哺乳动物的再生修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guo Huang其他文献
Guo Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guo Huang', 18)}}的其他基金
Genetic circuitry governing heart growth and repair
控制心脏生长和修复的遗传电路
- 批准号:
10770716 - 财政年份:2022
- 资助金额:
$ 55.55万 - 项目类别:
Genetic circuitry governing heart growth and repair
控制心脏生长和修复的遗传电路
- 批准号:
10340058 - 财政年份:2022
- 资助金额:
$ 55.55万 - 项目类别:
Diversity Supplement Denzel Deo Omengan
多样性补充剂 Denzel Deo Omengan
- 批准号:
10381108 - 财政年份:2021
- 资助金额:
$ 55.55万 - 项目类别:
Molecular control of cardiac regenerative potential
心脏再生潜力的分子控制
- 批准号:
10512418 - 财政年份:2017
- 资助金额:
$ 55.55万 - 项目类别:
Molecular control of cardiac regenerative potential
心脏再生潜力的分子控制
- 批准号:
10518101 - 财政年份:2017
- 资助金额:
$ 55.55万 - 项目类别:
Molecular control of cardiac regenerative potential
心脏再生潜力的分子控制
- 批准号:
10308456 - 财政年份:2017
- 资助金额:
$ 55.55万 - 项目类别:
Retinoic Acid Signaling in Heart Development and Regeneration
心脏发育和再生中的视黄酸信号传导
- 批准号:
8523967 - 财政年份:2012
- 资助金额:
$ 55.55万 - 项目类别:
Retinoic Acid Signaling in Heart Development and Regeneration
心脏发育和再生中的视黄酸信号传导
- 批准号:
8353358 - 财政年份:2012
- 资助金额:
$ 55.55万 - 项目类别:
Retinoic Acid Signaling in Heart Development and Regeneration
心脏发育和再生中的视黄酸信号传导
- 批准号:
9031130 - 财政年份:2012
- 资助金额:
$ 55.55万 - 项目类别:
相似国自然基金
内皮β3肾上腺素能受体调控线粒体功能参与血管衰老的作用研究
- 批准号:82370408
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肾上腺素能受体激动剂引起睑板腺功能障碍发病的机制研究
- 批准号:82371024
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
α1-和β3-肾上腺素能受体的荧光探针可视化研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
β2肾上腺素能受体调控皮肤角化细胞活化在慢性重叠型疼痛状态中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
苯乙酰谷氨酰胺通过beta-2肾上腺素能受体调节小胶质细胞活化参与糖尿病视网膜病变炎症的机制研究
- 批准号:82171071
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Rhinovirus, airway smooth muscle, and mechanisms of irreversible airflow obstruction
鼻病毒、气道平滑肌和不可逆气流阻塞机制
- 批准号:
10735460 - 财政年份:2023
- 资助金额:
$ 55.55万 - 项目类别:
An Enzyme-Based Antidote for Acute Nicotine Toxicity
一种基于酶的急性尼古丁中毒解毒剂
- 批准号:
10790758 - 财政年份:2023
- 资助金额:
$ 55.55万 - 项目类别:
Development of small molecule Protease-activated-receptor-2 antagonists as oral asthma therapeutics
开发小分子蛋白酶激活受体 2 拮抗剂作为口服哮喘治疗药物
- 批准号:
10766584 - 财政年份:2023
- 资助金额:
$ 55.55万 - 项目类别:
Diversity Supplement to Beta-Adrenergic Modulation of Drug Cue Reactivity: Neural and Behavioral Mechanisms
药物提示反应性β-肾上腺素能调节的多样性补充:神经和行为机制
- 批准号:
10838177 - 财政年份:2022
- 资助金额:
$ 55.55万 - 项目类别:
Beta-Adrenergic Modulation of Drug Cue Reactivity: Neural and Behavioral Mechanisms
药物提示反应性的β-肾上腺素调节:神经和行为机制
- 批准号:
10446411 - 财政年份:2022
- 资助金额:
$ 55.55万 - 项目类别: