Impact of Schwann Cell Pathology on Axon Structure and Function
雪旺细胞病理学对轴突结构和功能的影响
基本信息
- 批准号:10568051
- 负责人:
- 金额:$ 57.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAffectAge MonthsAxonBasal laminaBiologyCell NucleusCharcot-Marie-Tooth DiseaseClinicalCollagenCyclic AMPDefectDiameterDiseaseDistalEGR2 geneExhibitsFailureFiberG-Protein-Coupled ReceptorsGenetic TranscriptionHumanInflammationInflammatory ResponseInheritedLaminin ReceptorLongevityMacrophageMaintenanceMinorMusMutant Strains MiceMutationMyelinMyelin SheathNerveNervous System PhysiologyNeural ConductionNeurologicNeuropathyParalysedPathogenesisPathologicPathologyPathway interactionsPeripheralPeripheral NervesPeripheral Nervous System DiseasesPhenotypePopulationProteinsRadialRanvier&aposs NodesRegulationRoleSchwann CellsSeriesSeveritiesSignal TransductionStructureTestingThickcellular pathologyclinical phenotypeconditional knockoutdifferential expressiondisabilitydysmyelinationinflammatory milieuinsightmouse modelmutantmyelinationnerve injuryneuroinflammationneurotransmissionnovel therapeutic interventionpharmacologicsciatic nervetranscription factortranscriptometranscriptome sequencing
项目摘要
Reciprocal interactions between axons and Schwann cells (SCs) drive the formation, function, and maintenance
of myelinated nerves, which are essential for effective saltatory conduction and neurologic function. Extrinsic
signals from the axon and the basal lamina (BL) cooperatively drive expression of a series of SC transcription
factors (TFs), culminating in the expression of Egr2, the master regulator of PNS myelination. Egr2 is required
for SCs to advance from the promyelinating stage, when they wrap axons once, to myelination, when they
upregulate myelin components and form the multilamellar myelin sheath. Myelinating SCs in turn re-organize
axons into distinct domains, in particular the node of Ranvier, and increase axon size. These collective changes
enable and optimize action potential propagation by saltatory conduction. The importance of this regulation of
axon biology by SCs is underscored by the disability associated with acquired and inherited (e.g., Charcot Marie
Tooth (CMT) disorders of myelinating SCs (mSCs). CMTs that result from various SC mutations cause
de/dysmyelination characterized by slow nerve conduction velocity (NCV), often with nerve conduction block
(NCB). Pathologic features of CMTs typically include inflammation, hypertrophic changes, reduced axon
diameters and (distal) axon loss. The resulting neurological disability can range from minor to severe. How SC
defects drive this array of cellular pathologies and what mechanisms underlie the clinical spectrum of CMTs are
key questions with important translational implications. To interrogate how SC pathology impacts axon biology
and leads to clinical defects, we are characterizing mice in which two key SC proteins, Egr2 and the G coupled
protein receptor, Gpr126 have been deleted. Conditional knockouts (cKOs) of either of these proteins arrest SCs
at the promyelinating stage and blocks their ability to form myelin. Yet these mice have very different phenotypes:
Gpr126 cKOs are mildly affected and have a normal life span whereas Egr2 cKOs are progressively paralyzed
and moribund by 3-4 months of age. As expected, NCV is markedly slow in both mutants. However, only the
Egr2 cKOs exhibit frank NCB, a likely driver of their severe disability. Correspondingly, these mutants have very
distinct nerve pathologies. Egr2 cKOs nerves are markedly inflamed, hypertrophic, and their axons are
significantly smaller as compared to Gpr126 cKOs. To further elucidate differences between these mutants, we
will investigate: i) the role of inflammation in their respective phenotypes and why these dysmyelinating SCs
differentially activate inflammation, ii) examine the mechanisms by which these SC mutations regulate axon
diameter and iii) use single nuclei RNAseq to characterize changes in the transcriptomes of SCs that impact
axon biology and function in nerve conduction. These studies should provide important new insights into how
SC pathology impacts axon biology and function and may lead to new therapeutic strategies to ameliorate
disability in disorders of myelinated fibers.
轴突和雪旺细胞 (SC) 之间的相互作用驱动轴突的形成、功能和维护
有髓神经,这对于有效的跳跃传导和神经功能至关重要。外在
来自轴突和基底层 (BL) 的信号协同驱动一系列 SC 转录的表达
因子 (TF),最终导致 Egr2 的表达,Egr2 是三七总皂苷 (PNS) 髓鞘形成的主要调节因子。需要 Egr2
SCs从早髓鞘阶段(当它们包裹轴突一次)前进到髓鞘形成阶段(当它们
上调髓磷脂成分并形成多层髓鞘。髓鞘 SC 反过来重新组织
轴突进入不同的域,特别是朗飞结,并增加轴突尺寸。这些集体的改变
通过跳跃传导实现并优化动作电位传播。此项规定的重要性
SC 的轴突生物学强调了与获得性和遗传性相关的残疾(例如,Charcot Marie
髓鞘 SC (mSC) 的牙齿 (CMT) 疾病。由各种 SC 突变引起的 CMT 会导致
以神经传导速度 (NCV) 缓慢为特征的脱/髓鞘脱失,通常伴有神经传导阻滞
(NCB)。 CMT 的病理特征通常包括炎症、肥大性改变、轴突减少
直径和(远端)轴突损失。由此产生的神经功能障碍的范围可以从轻微到严重。如何SC
缺陷驱动了一系列细胞病理学,以及 CMT 临床谱的潜在机制是什么
具有重要转化意义的关键问题。探究 SC 病理学如何影响轴突生物学
并导致临床缺陷,我们正在表征小鼠,其中两种关键的 SC 蛋白 Egr2 和 G 偶联
蛋白质受体 Gpr126 已被删除。这些蛋白质的条件敲除 (cKO) 会阻止 SC
在髓鞘形成阶段并阻止其形成髓磷脂的能力。然而这些小鼠具有非常不同的表型:
Gpr126 cKO 受到轻微影响并具有正常寿命,而 Egr2 cKO 则逐渐瘫痪
3-4个月龄时濒临死亡。正如预期的那样,NCV 在两种突变体中均明显缓慢。然而,只有
Egr2 cKO 表现出明显的 NCB,这可能是其严重残疾的驱动因素。相应地,这些突变体具有非常
独特的神经病理学。 Egr2 cKOs 神经明显发炎、肥大,轴突
与 Gpr126 cKO 相比明显更小。为了进一步阐明这些突变体之间的差异,我们
将研究:i) 炎症在其各自表型中的作用以及为什么这些髓鞘形成障碍 SC
差异性激活炎症,ii) 检查这些 SC 突变调节轴突的机制
直径和 iii) 使用单核 RNAseq 来表征影响 SC 转录组的变化
轴突生物学和神经传导功能。这些研究应该为如何
SC 病理学影响轴突生物学和功能,并可能导致新的治疗策略来改善
有髓纤维疾病的残疾。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES SALZER其他文献
JAMES SALZER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES SALZER', 18)}}的其他基金
Role and Regulation of Neural Stem Cells in Remyelination
神经干细胞在髓鞘再生中的作用和调节
- 批准号:
10412936 - 财政年份:2018
- 资助金额:
$ 57.21万 - 项目类别:
Role and Regulation of Neural Stem Cells in Remyelination
神经干细胞在髓鞘再生中的作用和调节
- 批准号:
10155591 - 财政年份:2018
- 资助金额:
$ 57.21万 - 项目类别:
Regulation of Schwann cell enshealthment and myelination by type III Neuregulin 1
III 型神经调节蛋白 1 对雪旺细胞健康和髓鞘形成的调节
- 批准号:
8675621 - 财政年份:2013
- 资助金额:
$ 57.21万 - 项目类别:
2012 Myelin Gordon Research Conference & Gordon Research Seminar
2012年髓磷脂戈登研究会议
- 批准号:
8317793 - 财政年份:2012
- 资助金额:
$ 57.21万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Voltage Imaging of Astrocyte-Neuron Interactions
星形胶质细胞-神经元相互作用的电压成像
- 批准号:
10711423 - 财政年份:2023
- 资助金额:
$ 57.21万 - 项目类别:
Multimodal ventral tegmental area decrements in a mouse Alzheimer's model
小鼠阿尔茨海默病模型中多模式腹侧被盖面积减少
- 批准号:
10537306 - 财政年份:2022
- 资助金额:
$ 57.21万 - 项目类别:
Multimodal ventral tegmental area decrements in a mouse Alzheimer's model
小鼠阿尔茨海默病模型中多模式腹侧被盖面积减少
- 批准号:
10709503 - 财政年份:2022
- 资助金额:
$ 57.21万 - 项目类别:
Development of swallow evoked potentials as a novel tool to investigate swallowin
吞咽诱发电位的开发作为研究吞咽的新工具
- 批准号:
7883020 - 财政年份:2010
- 资助金额:
$ 57.21万 - 项目类别:
Development of swallow evoked potentials as a novel tool to investigate swallowin
吞咽诱发电位的开发作为研究吞咽的新工具
- 批准号:
8063194 - 财政年份:2010
- 资助金额:
$ 57.21万 - 项目类别: