Precision genome editing in vivo to treat retinal diseases
体内精准基因组编辑治疗视网膜疾病
基本信息
- 批准号:10565189
- 负责人:
- 金额:$ 60.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:220kDa rod outer segment rim proteinAddressAdenineAllelesAnimal ModelBenchmarkingBiological AssayBlindnessCOVID-19CRISPR/Cas technologyCell LineCell physiologyCellsChargeColorComplexCoomassie blueDNADNA Double Strand BreakDNA IntegrationDataDeletion MutationDerivation procedureDevelopmentDiseaseEngineeringEnzymesEyeFDA approvedGenesGeneticGenomeGenomic DNAGenomicsGuide RNAHereditary DiseaseHistologyHumanImaging TechniquesInheritedInsertion MutationLabelLaboratoriesLeber&aposs amaurosisLinkLipidsMass Spectrum AnalysisMembraneMessenger RNAMethodsModelingMultienzyme ComplexesMusMutateMutationNucleosidesPenetrationPeptidesPhotoreceptorsPhototransductionPoint MutationPreclinical TestingProtein AnalysisProtein Binding DomainProteinsPublicationsPublishingQuality of lifeRNARNA StabilityRNA deliveryRNA vaccineRPE65 proteinReagentReporterRetinaRetinal DegenerationRetinal DiseasesRetinitis PigmentosaRhodopsinRibonucleoproteinsRouteSafetyStargardt&aposs diseaseStructure of retinal pigment epitheliumSystemTechnologyTestingTherapeuticTherapeutic InterventionTherapy EvaluationToxic effectViralVisual CortexVisual impairmentWestern Blottingamino groupautosomebasebase editingbase editorcell typeclinical translationdelivery vehicledisease-causing mutationeffective therapyexperimental studyfunctional restorationgene augmentation therapygene functiongene therapygenome editinghuman diseasehuman modelimmunoregulationimprovedin vivoinnovationinsertion/deletion mutationinterestlipid nanoparticlemouse modelmutantmutation correctionnext generation sequencingnovelparticlephotoreceptor degenerationpreclinical studyprime editingprime editorprotein expressionrepairedresearch clinical testingresponseretinol isomeraserisk minimizationscreeningsuccesstherapeutic genome editingtooltranscriptometransversion mutationtwo photon microscopytwo-photonvisual cycle
项目摘要
SUMMARY
Inherited retinal disorders are a genetically heterogeneous group of blinding diseases that have significant impact
on quality of life. Therapeutic approaches have lagged significantly behind initial identification of the genetic
bases for these diseases. However, there are some striking successes; e.g., RPE65 gene augmentation therapy
was the first FDA-approved gene therapy for any genetically inherited disease. Clinical translation of current
CRISPR-Cas9 technology has been impeded by its low editing efficiency, error-prone homology-directed repair
(HDR), and substantial indel formation. Precision genome editing is an advanced, innovative CRISPR-Cas9-
associated genome-editing tool that addresses the limitations of typical CRISPR-Cas9 implementation. Adenine
base editors (ABEs) enable conversion of a point mutation independently of Cas9-induced double-stranded DNA
breaks and HDR. When base editing is not applicable (e.g., due to transversion mutations, large deletions, or
insertions), prime editing technology offers feasible alternatives. Genome editing is highly specific; however,
prolonged expression of base editors could lead to undesired off-target alterations throughout the genome and
transcriptome. We hypothesize that transient delivery of genome editors via RNPs and synthetic RNAs can
achieve the same high editing rates as those for genome editors delivered via viral transduction with reduced
off-target and bystander editing. Accordingly, we propose two thematically linked aims.
Aim 1. Correct inherited retinal disease-causing mutations in the rhodopsin gene (RhoE150K/E150K)
associated with autosomal recessive retinitis pigmentosa (RP) via adenine base editing. Delivery of ABEs
will be optimized in the thoroughly characterized RhoE150K/E150K mouse model of RP. Proposed approaches will
provide a platform for ABEs to be quickly adapted to any suitable RPE or retinal mutation.
Aim 2. Repair the ABCA4 protein in Abca4PV/PV mice by prime editing. Using the PE3b prime editor and two
concurrent stabilized engineered prime-editing guide RNAs (epegRNA), we will restore functional ABCA4 protein
in Abca4PV/PV mice that carry double allelic mutations in photoreceptors and the RPE. Using immunoblotting and
next-generation sequencing for detecting rescued Abca4, and two-photon imaging techniques to detect A2E, we
will optimize genome editing efficiency in this animal model to improve prime-editing technology and its
application to treat inherited retinal diseases.
For both aims, we will test various means to deliver the editors transiently: (i) cell-penetrating peptides fused to
editors in purified ribonucleoprotein (RNP)-editing complexes; (ii) Coomassie-lipid tags on purified RNP-editing
complexes; (iii) viral-like particles containing RNP-editing complexes; or (iv) lipid nanoparticles containing
stabilized mRNAs of genome-editing materials for intracellular expression. These delivery systems will be
optimized first in engineered chromogenic cell lines. The efficacy of base and prime editing in mice will be
benchmarked against the level of expression of RPE65 in the rd12 animal model of Leber congenital amaurosis.
概括
遗传性视网膜疾病是一组具有显着影响的遗传异质性致盲疾病。
关于生活质量。治疗方法明显落后于基因的初步鉴定
这些疾病的基础。然而,也有一些引人注目的成功;例如,RPE65 基因增强疗法
是 FDA 批准的第一个针对任何遗传性疾病的基因疗法。当前的临床翻译
CRISPR-Cas9技术因其编辑效率低、同源定向修复容易出错而受到阻碍
(HDR),以及大量的插入缺失形成。精准基因组编辑是一种先进、创新的 CRISPR-Cas9-
相关的基因组编辑工具,解决了典型 CRISPR-Cas9 实施的局限性。腺嘌呤
碱基编辑器 (ABE) 能够独立于 Cas9 诱导的双链 DNA 进行点突变的转换
中断和 HDR。当碱基编辑不适用时(例如,由于颠换突变、大量缺失或
插入),主要编辑技术提供了可行的替代方案。基因组编辑具有高度特异性;然而,
碱基编辑器的延长表达可能会导致整个基因组发生不希望的脱靶改变,
转录组。我们假设通过 RNP 和合成 RNA 瞬时传递基因组编辑器可以
实现与通过病毒转导传递的基因组编辑器相同的高编辑率,并且减少
脱靶和旁观者编辑。因此,我们提出两个主题相关的目标。
目标 1. 纠正视紫红质基因 (RhoE150K/E150K) 中引起遗传性视网膜疾病的突变
通过腺嘌呤碱基编辑与常染色体隐性视网膜色素变性(RP)相关。 ABE 的交付
将在彻底表征的 RP RhoE150K/E150K 小鼠模型中进行优化。拟议的方法将
为 ABE 提供一个快速适应任何合适的 RPE 或视网膜突变的平台。
目标 2. 通过 Prime 编辑修复 Abca4PV/PV 小鼠中的 ABCA4 蛋白。使用 PE3b prime 编辑器和两个
同时稳定的工程引物编辑引导RNA (epegRNA),我们将恢复功能性ABCA4蛋白
在光感受器和 RPE 中携带双等位基因突变的 Abca4PV/PV 小鼠中。使用免疫印迹和
新一代测序技术用于检测获救的 Abca4,双光子成像技术用于检测 A2E,我们
将优化该动物模型的基因组编辑效率,以改进prime编辑技术及其
应用于治疗遗传性视网膜疾病。
为了实现这两个目标,我们将测试各种瞬时传递编辑器的方法:(i) 融合细胞穿透肽
纯化核糖核蛋白 (RNP) 编辑复合物中的编辑器; (ii) 纯化 RNP 编辑上的考马斯脂质标签
复合体; (iii) 含有 RNP 编辑复合物的病毒样颗粒;或(iv)含有脂质纳米颗粒
稳定基因组编辑材料的 mRNA 以进行细胞内表达。这些输送系统将
首先在工程显色细胞系中进行了优化。碱基和引物编辑在小鼠中的功效将是
以 Leber 先天性黑蒙 rd12 动物模型中 RPE65 的表达水平为基准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krzysztof Palczewski其他文献
Krzysztof Palczewski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krzysztof Palczewski', 18)}}的其他基金
The complex role of phosphodiesterase 6 in rod photoreceptor health and function
磷酸二酯酶 6 在视杆光感受器健康和功能中的复杂作用
- 批准号:
10662478 - 财政年份:2020
- 资助金额:
$ 60.23万 - 项目类别:
The complex role of phosphodiesterase 6 in rod photoreceptor health and function
磷酸二酯酶 6 在视杆光感受器健康和功能中的复杂作用
- 批准号:
10455528 - 财政年份:2020
- 资助金额:
$ 60.23万 - 项目类别:
Use of systems pharmacology to prevent rod and cone photoreceptor degeneration
利用系统药理学预防视杆细胞和视锥细胞光感受器变性
- 批准号:
9554184 - 财政年份:2017
- 资助金额:
$ 60.23万 - 项目类别:
A two-photon ophthalmoscope for human retinal imaging and functional testing
用于人类视网膜成像和功能测试的双光子检眼镜
- 批准号:
9059094 - 财政年份:2015
- 资助金额:
$ 60.23万 - 项目类别:
Regulation of Retinal Physiology by micro-RNAs
micro-RNA 对视网膜生理学的调节
- 批准号:
8627170 - 财政年份:2013
- 资助金额:
$ 60.23万 - 项目类别:
Regulation of Retinal Physiology by micro-RNAs
micro-RNA 对视网膜生理学的调节
- 批准号:
8431587 - 财政年份:2013
- 资助金额:
$ 60.23万 - 项目类别:
Photoreceptor Renewal by Retinal Pigmented Epithelium Phagocytosis
视网膜色素上皮吞噬作用的光感受器更新
- 批准号:
8330430 - 财政年份:2012
- 资助金额:
$ 60.23万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CD38 modulation of NAD metabolism driving scleroderma pathogenesis
CD38 调节 NAD 代谢驱动硬皮病发病机制
- 批准号:
10733929 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Soft wireless multimodal cardiac implantable devices for long-term investigating heart failure pathogenesis
用于长期研究心力衰竭发病机制的软无线多模式心脏植入装置
- 批准号:
10735395 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Preservation of brain NAD+ as a novel non-amyloid based therapeutic strategy for Alzheimer’s disease
保留大脑 NAD 作为阿尔茨海默病的一种新型非淀粉样蛋白治疗策略
- 批准号:
10588414 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Unravelling highly pathogenic influenza virus emergence
揭开高致病性流感病毒出现的谜团
- 批准号:
10718091 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别:
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 60.23万 - 项目类别: