Bright and Fast Sensors for Radioluminescence Microscopy of Single Living Cells
用于单个活细胞放射发光显微镜的明亮且快速的传感器
基本信息
- 批准号:8712913
- 负责人:
- 金额:$ 18.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAffectBehaviorBeta ParticleCancer BiologyCell Culture TechniquesCell CycleCellsCellular MorphologyCeramicsChargeCoupledDepositionDevelopmentDevicesDrug resistanceEnvironmentEquipmentEuropiumFeasibility StudiesFilmGene ExpressionGlassGoalsHematologyHospitalsImageImmuneIn SituIndividualLifeLightLutetiumMeasuresMethodsMicroscopeMicroscopyMorphologyOpticsOutputOxidesPerformancePhasePhotonsPlayPopulationPositron-Emission TomographyPowder dose formProcessPropertyRadioRadionuclide ImagingRadiopharmaceuticalsRefractoryReportingResearchResearch PersonnelResolutionRoleSpecimenStem cellsSystemTechniquesTechnologyTestingTherapeuticTissuesUniversitiesVariantVisionWorkWritingcancer stem cellcell injurycharge coupled device cameracommercializationdensitydetectorfluorescence microscopeimaging modalityimprovedinnovationinnovative technologiesinstrumentluminescencenovel strategiesoncologypublic health relevancequantumradiotracersensortechnological innovationtooltumoruptake
项目摘要
DESCRIPTION (provided by applicant): Radioluminescence microscopy is a newly developed method for imaging radionuclide uptake in live single cells. Current methods of radiotracer imaging are limited to measuring the average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. With the new radio- luminescence
microscopy technique, however, it is possible to visualize radiotracer uptake within individual cells in a fluorescence microscope environment. The goal of this project is to develop a revolutionary innovation in a key component used in this technique. This key part in the radioluminescence microscopy imaging system is the scintillator that converts ionizing beta radiation into optical photons that are imaged with a CCD camera. In this work, an improved scintillator will be developed, specifically for use in a radioluminescence microscopy system that will offer unprecedented sensitivity and spatial resolution. Such a technological advance has the potential for widespread use in research and in hospitals, providing a means to characterize how properties specific to individual cells (e.g. gene expression, cell cycle, cell damage, and cel morphology) affect the uptake and retention of radiotracers. Higher spatial resolution will allow single cells to be probed in situ, in dense tissue sections, and will dramatically improve the throughput of the instruments, allowing thousands of cells to be imaged at once. These new capabilities will be critical to help researchers better understand the behavior of rare single cels such as stem cells or drug-resistant cells. The objectives of this Phase I project is the demonstrate the feasibility of successfully depositing of thin (micron-scale) films of a highly dense transparent scintillator, europium-activated lutetium oxide (Lu2O3:Eu). This material has the highest density (9.5 g/cm3) of any known scintillator, high effective atomic number (67.3), excellent light output, and an emission wavelength (610 nm) for which Si sensors have a very high quantum efficiency. Select scintillator specimens will be integrated into a radioluminescence microscope demonstrating improved performance in this exciting new imaging system. Ultimately, the goal is to commercialize this technology as a radioluminescence-enabled imaging dish, which will have a standard form factor but will include a thin coating of the Lu2O3:Eu scintillator at the bottom. As such, the technological innovation will provide a valuable new tool to researchers allowing unprecedented localization of radiotracer uptake down to single living cells. This new innovative technology will have widespread use as an addition to current fluorescence microscope instruments in use today and thus will have great commercial potential.
描述(由申请人提供):放射发光显微镜是一种新开发的用于对活单细胞中放射性核素摄取进行成像的方法。目前的放射性示踪剂成像方法仅限于测量大型细胞群中放射性示踪剂的平均摄取量,因此缺乏量化细胞间差异的能力。借助新的放射发光技术
然而,显微镜技术可以在荧光显微镜环境中可视化单个细胞内放射性示踪剂的摄取。该项目的目标是对该技术中使用的关键组件进行革命性创新。放射发光显微镜成像系统的关键部分是闪烁体,它将电离 β 辐射转换为光学光子,并用 CCD 相机成像。在这项工作中,将开发一种改进的闪烁体,专门用于放射发光显微镜系统,该系统将提供前所未有的灵敏度和空间分辨率。这种技术进步有可能在研究和医院中广泛使用,提供一种手段来表征单个细胞的特定特性(例如基因表达、细胞周期、细胞损伤和细胞形态)如何影响放射性示踪剂的吸收和保留。更高的空间分辨率将允许在致密组织切片中对单个细胞进行原位探测,并将显着提高仪器的吞吐量,从而允许同时对数千个细胞进行成像。这些新功能对于帮助研究人员更好地了解干细胞或耐药细胞等稀有单细胞的行为至关重要。 该第一阶段项目的目标是证明成功沉积高密度透明闪烁体铕激活氧化镥 (Lu2O3:Eu) 薄膜的可行性。这种材料具有所有已知闪烁体中最高的密度(9.5 g/cm3)、高有效原子序数(67.3)、出色的光输出以及发射波长(610 nm),使硅传感器具有非常高的量子效率。选定的闪烁体样本将集成到放射发光显微镜中,展示这种令人兴奋的新型成像系统的改进性能。 最终,我们的目标是将这项技术商业化,作为一种具有辐射发光功能的成像盘,该成像盘将具有标准的外形尺寸,但底部将包括一层薄薄的 Lu2O3:Eu 闪烁体涂层。因此,这项技术创新将为研究人员提供一种有价值的新工具,使放射性示踪剂的摄取能够前所未有地定位到单个活细胞。这项新的创新技术将作为当前使用的荧光显微镜仪器的补充而得到广泛应用,因此将具有巨大的商业潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART R MILLER其他文献
STUART R MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART R MILLER', 18)}}的其他基金
Directional sensor for radioluminescence microscopy of next-generation tumor models
用于下一代肿瘤模型放射发光显微镜的定向传感器
- 批准号:
10324422 - 财政年份:2021
- 资助金额:
$ 18.67万 - 项目类别:
Bright and Fast Sensors for Radioluminescence Microscopy of Single Living Cells
用于单个活细胞放射发光显微镜的明亮且快速的传感器
- 批准号:
9135873 - 财政年份:2014
- 资助金额:
$ 18.67万 - 项目类别:
Bright and Fast Sensors for Radioluminescence Microscopy of Single Living Cells
用于单个活细胞放射发光显微镜的明亮且快速的传感器
- 批准号:
9267506 - 财政年份:2014
- 资助金额:
$ 18.67万 - 项目类别:
相似国自然基金
狭长受限空间火源移动-蔓延双动态行为及其影响下烟气输运机理研究
- 批准号:52374244
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
铜纳米线对聚合物材料在润滑油脂中摩擦学行为的影响机制
- 批准号:52305189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
农产品电商对农户绿色生产行为及绩效的影响研究
- 批准号:72303201
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
锂金属电池中SEI膜的力化非均匀性对锂沉积行为的影响
- 批准号:12302232
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
共存矿物胶体影响地下水中微塑料迁移行为的微界面机制
- 批准号:42307501
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the role of trained immunity in kidney transplant patients
阐明训练有素的免疫力在肾移植患者中的作用
- 批准号:
10642596 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Massachusetts Center for Alzheimer and dEmeNtia behaVIoral reSearch In minOrity agiNg (Mass-ENVISION)
马萨诸塞州阿尔茨海默病和痴呆症少数群体行为研究中心 (Mass-ENVISION)
- 批准号:
10729789 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Deconvolution of Physicochemical Properties Contributing to Passive Diffusion of Depsipeptides
有助于缩酚肽被动扩散的物理化学性质的反卷积
- 批准号:
10607589 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Guideline to Implementation: A Rapid Clinical Care Pathway to Care for Patients Affected by Chronic Constipation
实施指南:治疗慢性便秘患者的快速临床护理途径
- 批准号:
10570628 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别:
Center for SOcial CApital (SOCA): Promoting Multigenerational Health
社会资本中心 (SOCA):促进多代健康
- 批准号:
10661344 - 财政年份:2023
- 资助金额:
$ 18.67万 - 项目类别: