Developing 3D brain circuits on-a-chip for in vitro study of human cortico-striatal circuitry development and connectivity
开发片上 3D 大脑回路,用于人类皮质纹状体回路发育和连接的体外研究
基本信息
- 批准号:10741965
- 负责人:
- 金额:$ 25.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAxonBehaviorBenchmarkingBiological AssayBiologyBrainCellsCoculture TechniquesCognitionCorpus striatum structureCouplingDevelopmentDiseaseElectrodesElectrophysiology (science)EtiologyFoundationsFunctional disorderFutureGlutamatesGrantHumanIn VitroMicroelectrodesMicrofluidic MicrochipsMicrofluidicsModelingMonitorNeural InterconnectionNeurodevelopmental DisorderNeuronal DifferentiationNeuronsOrganoidsPathogenesisPathologicPathway interactionsPatientsPhysiologicalPhysiologyResolutionRodentSchizophreniaStructureSurfaceSystembrain circuitrybrain dysfunctionfunctional outcomeshuman pluripotent stem cellimprintin vivoinnovationinsightmicrophysiology systemneuralneural circuitneural networknew therapeutic targetnovelnovel strategiesnovel therapeuticspharmacologicreconstitutionreconstructionresponsetransmission processtwo-dimensional
项目摘要
Neural circuits are the underlying functional units of the human brain. By receiving glutamatergic (Glut)
inputs through cortico-striatal pathway, the striatum acts as an integrative hub to coordinate multiple higher-order
behavior and cognition. Dysfunction of the striatum and the associated neural circuitry development have been
implicated in the pathogenesis of multiple neurodevelopmental disorders e.g., schizophrenia. Despite the
functional importance, studies of such long-distance human cortical-subcortical network development and
connectivity have been significantly hindered due to lack of suitable microphysiological platforms. A major
unresolved hurdle in current human cells-based assays is that in vitro cultures weakly recapitulate the key biology
of neural microphysiological system, especially the long-distance projections in both two and three dimensions
(2D/3D). In this grant, we propose to fill this critical gap, by reconstructing human cortico-striatal circuits on-a-
chip to recapitulate and monitor long-range brain circuitry development and connectivity in vitro, in response to
PAR-20-082. We will reconstruct human cortico-striatal circuits by developing a novel 2D/3D microfluidic
microelectrode arrays (MEA) chip together with the co-culture of human pluripotent stem cells (hPSCs)-derived
region-specific neurons or brain organoids. Coupling with MEA allows us to monitor brain circuit dynamics in a
high-throughput manner. Further, our innovative implementation of microfluidic channels and arrays of surface
and probe electrodes in 3D configurations enables resemblance of 3D brain circuits for high-order brain function
studies. We hypothesize that human cortico-striatal circuits on a microfluidic-MEA chip can reconstitute striatal
synchrony, a key striatal physiology which is absent in unconnected striatal neurons, and the reconstructed 3D
neural circuits between cortical and striatal organoids can resemble high-order brain function e.g., brain waves
like in vivo. We will reconstruct human cortico-striatal circuits by using our novel microfluidic MEA chip together
with the co-culture of hPSCs-derived cortical and striatal neurons in Aim 1. We will monitor axon projections and
neural network dynamics during circuitry development and determine whether striatal synchrony is driven by
cortical Glut inputs by pharmacological manipulation of Glut transmission. In Aim 2, we will develop a 3D
microfluidic MEA chip with microchannels and microelectrodes integrated in 3D configurations. We will
reconstruct 3D cortico-striatal circuits by assembling cortical and striatal organoids on-a-chip. We expect 3D
brain circuits on-a-chip approach will resemble brain waves (a.k.a. large-scale neural oscillation) like human
brains. This proposal presents a novel approach to reconstitute well-defined long-range human circuit in vitro.
Our model can be benchmarked against existing human and rodent in vitro brain circuitry systems and exceed
state-of-the-art by coupling high-throughput functional readout and reconstructing 3D brain circuits on-a-chip.
The future pathological studies by using patients-derived brain circuitry on-a-chip models (e.g., using SCZ
patient-derived hPSCs) could potentially illustrate the circuit-based etiology and provide novel therapeutic target.
神经回路是人脑的基本功能单元。通过接受谷氨酸(Glut)
通过皮质纹状体通路输入,纹状体充当协调多个高阶的综合枢纽
行为和认知。纹状体功能障碍和相关的神经回路发育已被
与多种神经发育障碍(例如精神分裂症)的发病机制有关。尽管
功能重要性,对这种长距离人类皮质-皮质下网络发展的研究和
由于缺乏合适的微生理平台,连通性受到严重阻碍。一个专业
当前基于人类细胞的检测中尚未解决的障碍是体外培养物很难概括关键生物学
神经微生理系统的研究,特别是二维和三维的长距离投影
(2D/3D)。在这笔赠款中,我们建议通过重建人类皮质纹状体回路来填补这一关键空白
芯片可在体外重述和监测远程脑电路的发育和连接,以响应
PAR-20-082。我们将通过开发新型 2D/3D 微流体来重建人类皮质纹状体回路
微电极阵列(MEA)芯片与人类多能干细胞(hPSC)来源的共培养
区域特异性神经元或大脑类器官。与 MEA 耦合使我们能够监测脑回路动态
高通量方式。此外,我们对微流体通道和表面阵列的创新实施
3D 配置中的探针电极可以实现高阶大脑功能的 3D 大脑回路的相似性
研究。我们假设微流控 MEA 芯片上的人类皮质纹状体回路可以重建纹状体
同步性,一种关键的纹状体生理学,在未连接的纹状体神经元中不存在,以及重建的 3D
皮质和纹状体类器官之间的神经回路可以类似于高阶大脑功能,例如脑电波
就像在体内一样。我们将通过使用我们的新型微流控MEA芯片来重建人类皮质纹状体回路
在目标 1 中与 hPSC 衍生的皮质和纹状体神经元共培养。我们将监测轴突投射并
电路开发过程中的神经网络动力学,并确定纹状体同步是否由以下因素驱动
通过药理学操纵 Glut 传递来进行皮质 Glut 输入。在目标 2 中,我们将开发 3D
具有集成在 3D 配置中的微通道和微电极的微流控 MEA 芯片。我们将
通过在芯片上组装皮质和纹状体类器官来重建 3D 皮质纹状体回路。我们期待 3D
脑电路片上方法将类似于人类的脑电波(又名大规模神经振荡)
大脑。该提案提出了一种在体外重建明确的长距离人体回路的新方法。
我们的模型可以以现有的人类和啮齿动物体外脑电路系统为基准,并超过
通过耦合高通量功能读出和在芯片上重建 3D 大脑电路,实现了最先进的技术。
未来的病理学研究将使用源自患者的脑电路芯片模型(例如,使用 SCZ
患者来源的 hPSC)可能会阐明基于回路的病因并提供新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziyuan Guo其他文献
Ziyuan Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziyuan Guo', 18)}}的其他基金
A new human iPSC model of ALS: natural modifiers protecting FUS mutation carriers from the disease
一种新的 ALS 人类 iPSC 模型:保护 FUS 突变携带者免受疾病侵害的天然修饰剂
- 批准号:
10227376 - 财政年份:2021
- 资助金额:
$ 25.14万 - 项目类别:
相似国自然基金
多场耦合下轴突多尺度力学行为的非完整动力学建模与分析
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
前额叶皮层神经元的轴突功能异常在精神分裂样行为中的作用
- 批准号:31800991
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
多肽纳米凝胶支架引导二甲胺四环素定向活化的小胶质细胞植入对损伤脊髓神经元和轴突影响的动物实验研究
- 批准号:31872310
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
3D微图形化静电纺丝神经定向再生仿生支架复合NSCs修复CST环路损伤界面及在轴突导向中的作用
- 批准号:81672263
- 批准年份:2016
- 资助金额:57.0 万元
- 项目类别:面上项目
α-Chimaerin在缺血性脑卒中轴突出芽和功能修复的作用和机制研究
- 批准号:81671229
- 批准年份:2016
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Multiplexed Sensing and Control of Neuromodulators and Peptides in the Awake Brain
清醒大脑中神经调节剂和肽的多重传感和控制
- 批准号:
10731789 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Investigating the Mechanism of Optic Nerve disorders associated with Down Syndrome
研究与唐氏综合症相关的视神经疾病的机制
- 批准号:
10658120 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10905596 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别:
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 25.14万 - 项目类别: