Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
基本信息
- 批准号:10742205
- 负责人:
- 金额:$ 24.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-03 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAntimalarialsArtemisininsBiologicalBiological AssayBiologyBloodBlood CellsCellsCessation of lifeChemical StructureChloroquineChloroquine resistanceCompetenceComputer ModelsDataDevelopmentDiseaseDiversity LibraryDrug KineticsDrug resistanceEffectivenessErythrocytesEvaluationEvolutionFutureGoalsGrantGrowthHepG2HepatocyteIn VitroInfectionInvadedLeadLibrariesLifeLife Cycle StagesLiverLiver MicrosomesMachine LearningMalariaMalignant NeoplasmsMeasuresModelingMolecularMusOrganic SynthesisParasite resistanceParasitesPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhysiciansPlasmodiumPlasmodium falciparumProbabilityProductivityPropertyProphylactic treatmentPublicationsPyrimethamineReportingResearch PersonnelResistanceResourcesRiskSolubilitySulfadoxineSymptomsTechnologyTestingTherapeuticTimeTrainingTriageValidationanalogaqueouscandidate identificationcostcost efficientcytotoxicitydesigndisorder controldrug developmentdrug discoveryefficacy evaluationexperienceheuristicshigh throughput screeninghuman diseasein vivoinhibitorinnovationmachine learning methodmachine learning modelmachine learning predictionmalaria infectionmeetingsnew therapeutic targetnovelnovel strategiesnovel therapeutic interventionnovel therapeuticspathogenpreventprophylacticrandom forestscreeningskillssmall moleculestatisticstooltransmission process
项目摘要
PROJECT SUMMARY
Specifically, this proposal focuses on novel new small molecules that inhibit both the blood and liver
stages of malaria infection. The causative pathogen – Plasmodium spp. – was responsible for 241,000,000 cases
that resulted in 627,000 deaths in 2020. Plasmodium spp. drug-resistant infections leave few good choices for
physicians and put at risk the productivity and the lives of those infected. A clear case has been made for new
drugs to treat these infections through the discovery and development of novel therapeutic strategies. These
strategies would optimally be dual stage, targeting the blood stage for treatment and the liver stage for
prophylaxis.
The innovative strategy in this proposal builds on the technology of machine learning models for the
prediction of novel dual-stage antimalarial small molecules with significant potential as drug discovery entities.
Such a computational approach to seed the discovery of small molecule malaria parasite inhibitors with dual-
stage efficacy has only been reported by us in 2022. The approach begins with preliminary data around two novel
antimalarial small molecules with demonstrated in vitro efficacy versus both blood and liver stages of Plasmodium
spp. infection and a lack of significant cytotoxicity to cultured liver cells. These molecules were derived from a
set of hits discovered with a random forest model trained with high-throughput screening data. The molecules
are representative of novel chemotypes for dual-stage antimalarials and, thus, offer a high probability of
modulating new targets that are critical throughout the parasite’s lifecycle. This initial machine learning effort will
be significantly expanded with a range of model types and a different and larger commercial library to predict a
set of new hit compounds.
Two validated hits, meeting in vitro efficacy and cytotoxicity criteria and maintaining wild type in vitro
efficacy versus a set of drug-resistant parasite strains, will be profiled for key molecular properties such as mouse
liver microsomal stability, aqueous solubility, and mouse pharmacokinetic profile. These data along with the
existing in vitro efficacy and cytotoxicity evaluations will guide the evolution of each hit with a goal of preparing
one or more analogs with a composite profile to enable downstream in vivo efficacy evaluation in infection
models. A novel combination of medicinal chemistry and machine learning will be leveraged to afford such
molecules.
项目摘要
具体而言,该提案的重点是抑制血液和肝脏的新型小分子
疟疾感染的阶段。病原体 - 疟原虫属。 - 负责241,000,000个案件
这导致2020年的627,000人死亡。疟原虫属。抗药性感染几乎没有选择
医师并冒险冒着感染者的生产力和生命。新的案件已经为新的
通过发现和发展新型治疗策略来治疗这些感染的药物。
策略将是双重阶段的最佳阶段,针对血液阶段进行治疗和肝脏阶段
预防。
该提案中的创新策略建立在机器学习模型的技术基础上
新型的双阶段抗疟疾小分子的预测,具有巨大潜力作为药物发现实体。
这种计算方法是用双重分子的寄生虫抑制剂发现小分子疟疾抑制剂
我们仅在2022年才报告了阶段效率。该方法始于两个新颖的初步数据
具有体外效率的抗疟疾小分子与疟原虫的血液和肝脏阶段
spp。感染和缺乏对培养的肝细胞的细胞毒性。这些分子源自
用随机森林模型发现的一组命中,该模型训练有高通量筛选数据。分子
代表了双阶段抗疟药的新型化学型,因此提供了很高的可能性
调节整个寄生虫生命周期至关重要的新目标。最初的机器学习工作将
通过一系列模型类型和一个不同的更大的商业库进行显着扩展,以预测
一组新的命中化合物。
两个经过验证的命中,满足体外效率和细胞毒性标准并在体外保持野生型
功效与一组抗药性寄生虫菌株将用于关键分子特性,例如小鼠
肝微粒体稳定性,水溶性和小鼠药代动力学特征。这些数据以及
现有的体外效率和细胞毒性评估将指导每个命中的演变,以准备
一个或多个具有复合曲线的类似物,可以在感染中进行下游体内效率评估
型号。药物化学和机器学习的一种新型组合将被利用为这样
分子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily R Derbyshire其他文献
Emily R Derbyshire的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily R Derbyshire', 18)}}的其他基金
Chemical Biology Strategies to Resolve Plasmodium Heat Shock Protein Function
解决疟原虫热休克蛋白功能的化学生物学策略
- 批准号:
10734886 - 财政年份:2023
- 资助金额:
$ 24.64万 - 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
- 批准号:
10735130 - 财政年份:2023
- 资助金额:
$ 24.64万 - 项目类别:
Enabling Host Processes for Defense Against Liver Stage Malaria Infection
启用主机进程防御肝期疟疾感染
- 批准号:
9348873 - 财政年份:2017
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
8627185 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
8443165 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
9100871 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Discovering new compounds to treat global infectious disease
发现治疗全球传染病的新化合物
- 批准号:
8878462 - 财政年份:2013
- 资助金额:
$ 24.64万 - 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
- 批准号:
7909506 - 财政年份:2010
- 资助金额:
$ 24.64万 - 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
- 批准号:
8465300 - 财政年份:2010
- 资助金额:
$ 24.64万 - 项目类别:
Investigating the shikimate pathway in Plasmodium falciparum
研究恶性疟原虫中的莽草酸途径
- 批准号:
8045421 - 财政年份:2010
- 资助金额:
$ 24.64万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding Microbial Diversity in the Human Gut Microbiome
解码人类肠道微生物组中的微生物多样性
- 批准号:
10713170 - 财政年份:2023
- 资助金额:
$ 24.64万 - 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
- 批准号:
10533634 - 财政年份:2022
- 资助金额:
$ 24.64万 - 项目类别:
Plasmodium Protein Kinase Focused Antimalarials Discovery
疟原虫蛋白激酶聚焦抗疟药的发现
- 批准号:
10663334 - 财政年份:2022
- 资助金额:
$ 24.64万 - 项目类别:
Repurposing Atovaquone for Preventing Ovarian Cancer: An Example of Successful Inhibition of Oxidative Phosphorylation
重新利用阿托伐醌预防卵巢癌:成功抑制氧化磷酸化的一个例子
- 批准号:
10524134 - 财政年份:2020
- 资助金额:
$ 24.64万 - 项目类别:
Repurposing Atovaquone for Preventing Ovarian Cancer: An Example of Successful Inhibition of Oxidative Phosphorylation
重新利用阿托伐醌预防卵巢癌:成功抑制氧化磷酸化的一个例子
- 批准号:
10813900 - 财政年份:2020
- 资助金额:
$ 24.64万 - 项目类别: