Structural and Mechanistic Studies of DNA Repair

DNA修复的结构和机制研究

基本信息

  • 批准号:
    10622967
  • 负责人:
  • 金额:
    $ 46.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Oxidative stress is a prevalent and dangerous cellular condition resulting in deleterious modifications to the structure of DNA. These modifications promote mutagenesis and consequently the development of numerous human maladies, including cancer. The base excision repair (BER) pathway is the cells primary defense against oxidative DNA damage and is a vital guardian of genome stability. While the roles of individual enzymes during a classical BER cycle are largely established, it remains enigmatic how these enzymes function together in a multi-protein/DNA complex to facilitate the channeling of toxic DNA repair intermediates between each protein. Importantly, BER not only occurs on naked duplex DNA, but also within chromatin that is composed of nucleosomes. These nucleosomes present a barrier to BER enzymes accessing and effectively repairing DNA damage. The mechanisms by which DNA repair proteins overcome this barrier to repair DNA damage in the nucleosome is poorly understood. The major goals of this proposal are to understand the molecular mechanisms of each BER factor both individually and within larger multi-protein/DNA complexes using naked duplex DNA and chromatin; and to decipher the molecular mechanism by which telomerase replicates the telomere. Elegant biophysical approaches are required to elucidate these BER complexities and to provide both a foundation for interpreting the biological response and the development of therapeutic treatments. We are in a unique position to advance this scientific front based on my strong track record in DNA damage and repair, assembled team of collaborators, and multidisciplinary approach. To meet this goal, we utilize a comprehensive approach of time- lapse X-ray crystallography, molecular dynamic simulations, enzyme kinetics, single-molecule total internal reflection microscopy, and cryo-EM. Using these methodologies, we will determine 1) how do new fundamental mechanistic steps alter the DNA polymerase and telomerase mechanism; 2) how do individual BER enzymes assemble into a multi-protein/DNA complex to facilitate the channeling of toxic DNA intermediates; 3) how are multi-protein/DNA BER complexes structurally organized; 4) how is DNA damage identified and repaired within nucleosomes; and 5) how are multi-protein/DNA BER complexes formed on nucleosomes containing DNA damage. This set of questions will go from an atomic level mechanistic understanding of key BER components to the structural and dynamic interactions within the entire BER multi-protein complex. By doing this, we will lay the foundation to address an inherent challenge in establishing cellular models and developing new therapeutic treatments that target DNA repair. With this information in hand, we will be closer to our long-term goal of providing a basis for rational drug design towards the development of more effective chemotherapeutics and synergistic drug combinations that target proteins involved in the DNA damage response.
氧化应激是一种普遍且危险的细胞状况,会导致细胞发生有害改变。 DNA 的结构。这些修饰促进诱变,从而促进许多 人类疾病,包括癌症。碱基切除修复 (BER) 途径是细胞的主要防御机制 DNA 氧化损伤是基因组稳定性的重要守护者。虽然单个酶在过程中的作用 经典的 BER 循环已基本建立,但这些酶如何在一个循环中一起发挥作用仍然是个谜。 多蛋白质/DNA 复合物,促进有毒 DNA 修复中间体在每种蛋白质之间的通道。 重要的是,BER 不仅发生在裸露的双链 DNA 上,而且也发生在由以下物质组成的染色质内: 核小体。这些核小体对 BER 酶访问和有效修复 DNA 构成了障碍 损害。 DNA 修复蛋白克服这一障碍以修复 DNA 损伤的机制 对核小体了解甚少。该提案的主要目标是了解分子机制 使用裸双链 DNA 单独和在更大的多蛋白/DNA 复合物中分析每个 BER 因子 和染色质;并破译端粒酶复制端粒的分子机制。优雅的 需要生物物理方法来阐明这些 BER 复杂性并为 解释生物反应和治疗方法的发展。我们处于独特的地位 基于我在 DNA 损伤和修复方面的良好记录,为了推进这一科学前沿,组建了以下团队: 合作者和多学科方法。为了实现这一目标,我们采用了一种综合的时间方法 延时X射线晶体学、分子动力学模拟、酶动力学、单分子全内部 反射显微镜和冷冻电镜。使用这些方法,我们将确定 1) 新的基本面如何 机械步骤改变 DNA 聚合酶和端粒酶机制; 2) 单个 BER 酶如何 组装成多蛋白质/DNA复合物,以促进有毒DNA中间体的通道; 3)怎么样 多蛋白/DNA BER 复合体结构组织良好; 4)DNA损伤是如何识别和修复的 核小体; 5) 多蛋白/DNA BER 复合物是如何在含有 DNA 的核小体上形成的 损害。这组问题将从对关键 BER 组件的原子级机械理解出发 整个 BER 多蛋白复合物内的结构和动态相互作用。通过这样做,我们将奠定 为解决建立细胞模型和开发新疗法的固有挑战奠定了基础 针对 DNA 修复的治疗。有了这些信息,我们将更接近我们的长期目标 为合理的药物设计提供基础,以开发更有效的化疗药物 针对参与 DNA 损伤反应的蛋白质的协同药物组合。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism of Deoxyguanosine Diphosphate Insertion by Human DNA Polymerase β.
  • DOI:
    10.1021/acs.biochem.0c00847
  • 发表时间:
    2021-02-09
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Varela FA;Freudenthal BD
  • 通讯作者:
    Freudenthal BD
Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair.
  • DOI:
    10.1016/j.jbc.2023.104636
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Fairlamb, Max S.;Spies, Maria;Washington, M. Todd;Freudenthal, Bret D.
  • 通讯作者:
    Freudenthal, Bret D.
Specific mutations in the D1-D2 linker region of VCP/p97 enhance ATPase activity and confer resistance to VCP inhibitors.
  • DOI:
    10.1038/cddiscovery.2017.65
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Bastola P;Wang F;Schaich MA;Gan T;Freudenthal BD;Chou TF;Chien J
  • 通讯作者:
    Chien J
Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage.
含有位点特异性 DNA 损伤的重组核小体的生成。
  • DOI:
    10.1007/978-1-0716-3373-1_4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan,BenjaminJ;Weaver,TylerM;Spencer,JonahJ;Freudenthal,BretD
  • 通讯作者:
    Freudenthal,BretD
History of DNA polymerase β X-ray crystallography.
  • DOI:
    10.1016/j.dnarep.2020.102928
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Whitaker AM;Freudenthal BD
  • 通讯作者:
    Freudenthal BD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bret D Freudenthal其他文献

Bret D Freudenthal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bret D Freudenthal', 18)}}的其他基金

APE1 Cleavage Mechanisms during DNA Repair
DNA 修复过程中 APE1 切割机制
  • 批准号:
    10443576
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
Structural and Mechanistic Studies of DNA Repair
DNA修复的结构和机制研究
  • 批准号:
    9762147
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
APE1 Cleavage Mechanisms during DNA Repair
DNA 修复过程中 APE1 切割机制
  • 批准号:
    10202601
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
Structural and Mechanistic Studies of DNA Repair
DNA修复的结构和机制研究
  • 批准号:
    10247705
  • 财政年份:
    2018
  • 资助金额:
    $ 46.5万
  • 项目类别:
DNA Repair Strategies that Impact Genomic Stability During Oxidative Stress
氧化应激期间影响基因组稳定性的 DNA 修复策略
  • 批准号:
    9330157
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:
DNA Repair Strategies that Impact Genomic Stability During Oxidative Stress
氧化应激期间影响基因组稳定性的 DNA 修复策略
  • 批准号:
    9131846
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:
DNA Repair Strategies that Impact Genomic Stability During Oxidative Stress
氧化应激期间影响基因组稳定性的 DNA 修复策略
  • 批准号:
    9136220
  • 财政年份:
    2015
  • 资助金额:
    $ 46.5万
  • 项目类别:

相似国自然基金

灵芝酸D通过GRB2激活DNA碱基切除修复减轻神经元损伤改善AD病症的机制研究
  • 批准号:
    82304745
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
一氧化氮通过调控碱基切除修复途径缓解冷藏桃果实mtDNA氧化损伤的分子机理
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
DNA损伤修复蛋白OGG1对肺部炎症的调控及其表观遗传机制
  • 批准号:
    31900424
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
线粒体DNA碱基修复调控因子APE1和TFAM在癫痫发病及神经损伤中的作用研究
  • 批准号:
    81873786
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
DNA糖基化酶的单分子检测及其在癌症早期诊断中的应用研究
  • 批准号:
    21705097
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modeling the Responsiveness of Sensitive Populations to Genotoxic Agents Using DNA Repair Inhibitors
使用 DNA 修复抑制剂模拟敏感人群对基因毒性药物的反应性
  • 批准号:
    10734425
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
Repair of DNA ends with adducts
用加合物修复 DNA 末端
  • 批准号:
    10587000
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
N6-methyladenosine (m6A) Interplays with RNA and DNA Damage to Regulate DNA Repair
N6-甲基腺苷 (m6A) 与 RNA 和 DNA 损伤相互作用以调节 DNA 修复
  • 批准号:
    10649063
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
Molecular Architecture of Oxidative Stress Induced Double Strand Break Repair
氧化应激诱导双链断裂修复的分子结构
  • 批准号:
    10755883
  • 财政年份:
    2023
  • 资助金额:
    $ 46.5万
  • 项目类别:
Role of TET1 in germ cell reprogramming and development
TET1 在生殖细胞重编程和发育中的作用
  • 批准号:
    10467364
  • 财政年份:
    2022
  • 资助金额:
    $ 46.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了