Promoting remyelination in multiple sclerosis by simultaneously modulating myelin debris clearance and myelin lipid synthesis
通过同时调节髓磷脂碎片清除和髓磷脂脂质合成促进多发性硬化症的髓鞘再生
基本信息
- 批准号:10621894
- 负责人:
- 金额:$ 43.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAgonistBexaroteneBrainCellsCentral Nervous SystemComplexDemyelinating DiseasesDemyelinationsDiseaseEtiologyExhibitsFatty AcidsGenerationsGenesGeneticGenetic TranscriptionGoalsHigh Fat DietHomeostasisImmune systemImpairmentLesionLipidsMicrogliaMultiple SclerosisMultiple Sclerosis LesionsMusMyelinNamesNatural regenerationOligodendrogliaPathway interactionsPeroxisome Proliferator-Activated ReceptorsPersonsPhagocytesPhagocytosisProteinsRXRA geneRoleSamplingSystemT-LymphocyteTestingTherapeuticTimeTranscriptional RegulationUnited Stateschemokineclinical practicecomparativecytokineexperimental studyimmunomodulatory therapiesinsightlipid biosynthesislipid metabolismlipidomicsmouse modelmultiple sclerosis patientmultiple sclerosis treatmentnovel therapeutic interventionpreventpromoterrecruitreduce symptomsremyelinationresponsetranscriptomics
项目摘要
Summary Statement/Abstract
Multiple sclerosis (MS) is the most common demyelinating disease, affecting approximately 400,000 people in the
United States and 2.5 million people worldwide. It is not clear what causes MS, but many believe that it is because
our own immune system attacks oligodendrocytes that generate myelin. However, the current therapies that dampen
our immune system can only relieve the symptoms but not cure the disease itself. Therefore, it is urgent to find novel
therapeutic approaches that can cure the disease, for instance by promoting remyelination. The central nervous
system has great potential to regenerate oligodendrocytes and remyelinate in response to myelin damage, however
the ability of remyelination is greatly diminished in the MS lesions. Two major reasons are known to prevent efficient
remyelination in MS lesions: 1) damaged myelin cannot be efficiently cleared, thereby preventing formation of new
oligodendrocytes, and 2) newly generated and/or existing oligodendrocytes have lost the ability to form new myelin.
We have identified a key regulator – Quaking (protein name: Qki; gene name: Qk) – that is potent to overcome both
obstacles. Firstly, we discovered that Qki is a key regulator of phagocytosis of microglia. Depletion of Qki in microglia
greatly reduced the phagocytic activity of microglia, which is critical for clearance of myelin debris and consequently
remyelination. Secondly, we discovered that Qki is a major regulator of oligodendrocyte differentiation and myelin
homeostasis by regulating lipid metabolism of both newly formed oligodendrocytes and existing oligodendrocytes in
the demyelinating lesions. Mature myelin has been considered an inert material for decades. However, our study
showed that mature myelin is in fact a very dynamic material through exploiting our genetic systems by depleting
Qki in mature myelinating oligodendrocytes of adult mice. The comparative lipidomic and transcriptomic analyses
identified Qki as an essential factor for myelin lipid biosynthesis by controlling the transcription of the lipid metabolism
genes, particularly those for fatty acid desaturation and elongation, via coactivation of the peroxisome proliferator-
activated receptor beta (PPARβ)-retinoid X receptor alpha (RXRα) complex. These findings were corroborated by
functional rescue experiments with brain penetrant PPARβ/RXRα agonists, KD3010 and bexarotene. We
hypothesize that restoring lipid metabolism by activating PPARβ/RXRα/Qki function will help remyelination in MS
through two ways: 1) activating microglia’s function to clear myelin debris, consequently promoting oligodendrocyte
regeneration, and 2) enhancing lipid generation of existing and newly generated oligodendrocytes. To test this
hypothesis, we propose the following three specific aims. To test this hypothesis, we propose the following three
specific aims: 1) To investigate the role of Qki/PPARβ in microglial phagocytosis in clearing myelin debris and
promoting remyelination, 2) to investigate the role of Qki/PPARβ in myelin lipid metabolism and remyelination, and
3) to elucidate the mechanism by which Qki functions as a coactivator to enhance PPARβ transcription activity in
both microglia and oligodendrocytes. Our studies will not only provide insights into the etiological mechanism for
MS, but more importantly, help MS patients find a cure through targeting remyelinating pathway.
摘要声明/摘要
多发性硬化症 (MS) 是最常见的脱髓鞘疾病,影响着大约 400,000 人
美国和全世界有 250 万人患有多发性硬化症,目前尚不清楚,但许多人认为这是因为。
我们自己的免疫系统会攻击产生髓磷脂的少突胶质细胞,但目前的疗法会抑制这种作用。
我们的免疫系统只能缓解症状,而不能治愈疾病本身,因此迫切需要寻找新的免疫系统。
可以治愈该疾病的治疗方法,例如通过促进髓鞘再生。
然而,该系统具有再生少突胶质细胞和髓鞘再生以应对髓磷脂损伤的巨大潜力
MS 病变中髓鞘再生的能力大大减弱,已知有两个主要原因阻碍了其有效进行。
MS病变中的髓鞘再生:1)受损的髓鞘不能被有效清除,从而阻止新髓鞘的形成
少突胶质细胞,2) 新生成的和/或现有的少突胶质细胞失去了形成新髓磷脂的能力。
我们已经确定了一个关键的调节因子——Quaking(蛋白质名称:Qki;基因名称:Qk)——它能够有效克服这两个问题
首先,我们发现Qki是小胶质细胞吞噬作用的关键调节因子。
大大降低了小胶质细胞的吞噬活性,这对于清除髓鞘碎片至关重要,因此
其次,我们发现Qki是少突胶质细胞分化和髓磷脂的主要调节因子
通过调节新形成的少突胶质细胞和现有少突胶质细胞的脂质代谢来维持体内平衡
然而,几十年来,成熟的髓鞘质一直被认为是一种惰性物质。
研究表明,成熟的髓磷脂实际上是一种非常动态的物质,通过消耗我们的遗传系统
成年小鼠成熟髓鞘少突胶质细胞中的 Qki 比较脂质组学和转录组学分析。
通过控制脂质代谢的转录,确定 Qki 是髓磷脂脂质生物合成的重要因子
基因,特别是那些通过过氧化物酶体增殖剂的共激活进行脂肪酸去饱和和延伸的基因
激活受体β(PPARβ)-类视黄醇X受体α(RXRα)复合物证实了这些发现。
使用脑渗透性 PPARβ/RXRα 激动剂、KD3010 和贝沙罗汀进行功能性救援实验。
通过激活 PPARβ/RXRα/Qki 功能恢复脂质代谢将有助于 MS 的髓鞘再生
通过两种方式:1)激活小胶质细胞清除髓磷脂碎片的功能,从而促进少突胶质细胞
再生,以及 2) 增强现有和新生成的少突胶质细胞的脂质生成来测试这一点。
假设,我们提出以下三个具体目标 为了检验这个假设,我们提出以下三个目标。
具体目的: 1) 研究 Qki/PPARβ 在小胶质细胞吞噬作用中清除髓磷脂碎片和
促进髓鞘再生,2) 研究 Qki/PPARβ 在髓磷脂脂质代谢和髓鞘再生中的作用,以及
3)阐明Qki作为共激活子增强PPARβ转录活性的机制
我们的研究不仅可以深入了解小胶质细胞和少突胶质细胞的病因机制。
多发性硬化症,但更重要的是,通过靶向髓鞘再生途径帮助多发性硬化症患者找到治愈方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Hu其他文献
Jian Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Hu', 18)}}的其他基金
The role of membrane homoeostasis of neural stem cell and glioma stem cells in neural development and gliomagenesis
神经干细胞和胶质瘤干细胞膜稳态在神经发育和胶质瘤发生中的作用
- 批准号:
10713009 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Investigating the role of dysfunctional histone H3.3 in driving early neuronal development and pediatric high-grade gliomas
研究功能失调的组蛋白 H3.3 在驱动早期神经元发育和儿童高级别胶质瘤中的作用
- 批准号:
10296014 - 财政年份:2021
- 资助金额:
$ 43.55万 - 项目类别:
Investigating the role of dysfunctional histone H3.3 in driving early neuronal development and pediatric high-grade gliomas
研究功能失调的组蛋白 H3.3 在驱动早期神经元发育和儿童高级别胶质瘤中的作用
- 批准号:
10416054 - 财政年份:2021
- 资助金额:
$ 43.55万 - 项目类别:
Transport, substrate specificity and regulation mechanisms of the ZIP transition metal transporters
ZIP过渡金属转运蛋白的转运、底物特异性和调控机制
- 批准号:
10383720 - 财政年份:2021
- 资助金额:
$ 43.55万 - 项目类别:
Transport, substrate specificity and regulation mechanisms of the ZIP transition metal transporters
ZIP过渡金属转运蛋白的转运、底物特异性和调控机制
- 批准号:
10616707 - 财政年份:2021
- 资助金额:
$ 43.55万 - 项目类别:
Structural and Mechanistic Characterization of the ZIP Metal Transporters
ZIP 金属运输机的结构和机械特性
- 批准号:
9923026 - 财政年份:2018
- 资助金额:
$ 43.55万 - 项目类别:
Role of Quaking gene in regulating the niche-independent stemness of glioma stem cells
Quak基因在调节胶质瘤干细胞的微环境独立干性中的作用
- 批准号:
10061559 - 财政年份:2017
- 资助金额:
$ 43.55万 - 项目类别:
Role of Quaking gene in regulating the niche-independent stemness of glioma stem cells
Quak基因在调节胶质瘤干细胞的微环境独立干性中的作用
- 批准号:
10310491 - 财政年份:2017
- 资助金额:
$ 43.55万 - 项目类别:
Role of Quaking gene in regulating the niche-independent stemness of glioma stem cells
Quak基因在调节胶质瘤干细胞的微环境独立干性中的作用
- 批准号:
10524200 - 财政年份:2017
- 资助金额:
$ 43.55万 - 项目类别:
Targeting glioma stem cells by perturbation of telomere maintenance mechanisms
通过扰动端粒维持机制靶向神经胶质瘤干细胞
- 批准号:
8928060 - 财政年份:2014
- 资助金额:
$ 43.55万 - 项目类别:
相似国自然基金
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境激素壬基酚对变应性鼻炎的影响及其对GPER特异性激动剂G-1在变应性鼻炎治疗作用中的干扰机制研究
- 批准号:82000963
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
促生长激素释放激素激动剂抑制平滑肌细胞转分化对动脉粥样硬化的影响及机制研究
- 批准号:81900389
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
五羟色胺2C受体激动剂对2型糖尿病小鼠β细胞功能的影响及机制研究
- 批准号:81803644
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
cAMP信号激动剂对恶性胶质瘤血管新生和血管正常化的影响及机制研究
- 批准号:81803568
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
- 批准号:
10679628 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Role of SIK3 in PKA/mTORC1 regulation of adipose browning
SIK3 在 PKA/mTORC1 调节脂肪褐变中的作用
- 批准号:
10736962 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Compartmentalized signaling and crosstalk in airway myocytes
气道肌细胞中的区室化信号传导和串扰
- 批准号:
10718208 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Investigating non-canonical mechanisms of endogenous opioids on motivation in dorsal midbrain
研究内源性阿片类药物对背侧中脑动机的非典型机制
- 批准号:
10624699 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
A functional characterization of Brugia malayi GABA-gated chloride channels: an unexplored target for antifilarial therapeutics
马来丝虫 GABA 门控氯离子通道的功能表征:抗丝虫治疗的未探索靶点
- 批准号:
10742453 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别: