Genetic interactions and the evolution of complex traits in yeast

酵母中的遗传相互作用和复杂性状的进化

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Adaptive evolution is a fundamental process in biology. At its simplest random mutation produces phenotypic variation on which selection acts, enriching for favorable phenotypes and purging the less- favorable ones. This process has produced the diversity of life on Earth. Yet at the same time, adaptive evolution is responsible for some of the most vexing problems in human health, from the growing problem of antibiotic resistance to real-time evolution of viral pathogens to cancers that resist drug treatments and evade the immune system. Despite this, we lack a basic mechanistic understanding of how genomes respond to selection. One major unknown is how adaptive evolution “chooses” one particular path from among a vast number of possible ones. Another major unknown is how genetic variation produces new phenotypes on which selection acts. Experimental Evolution provides a way forward to address both of these significant gaps in our knowledge. With advances in high-throughput biology we can evolve hundreds of initially identical populations in parallel for thousands of generations, with exquisite control over experimental parameters. This versatile technique makes it possible to test evolutionary theory through experiments that are impossible to perform in natural populations. At the same time, experimental evolution is powerful tool for functional genomics. By identifying the genes and pathways that respond to selective pressures, and how these mutations interact to alter phenotype, laboratory evolution experiments identify previously unknown cellular connections. In the past five years my laboratory has advanced a mechanistic understanding of adaptive evolution. Future work will determine how genetic changes give rise to complex phenotypes. We will perform evolution experiments following perturbation of the genetic background and in shifting environments. In addition to advancing our understanding of adaptive evolution, we expect, based on our prior work, to identify previously unknown nuclear-nuclear, nuclear-cytoplasmic, and gene- environment interactions. Finally, we will develop a fast and reliable method for performing multiple rounds of pooled gene editing in yeast, and we will use this method to systematically assay genetic interactions that have been missed by other methods. By connecting genotype to phenotype in an evolutionary context, our work will provide a mechanistic understanding of how complex traits evolve. This work will advance our understanding of adaptive evolution and the genetic basis of complex traits in less tractable systems, including humans and human pathogens.
项目摘要/摘要 自适应进化是生物学的基本过程。以最简单的随机突变产生 选择性作用的表型变化,丰富有利的表型,并清除较少的表型 有利的。这个过程产生了地球上生命的多样性。但同时,自适应 进化是由于日益严重的问题而造成人类健康中一些最烦人的问题 病毒病原体对抗药性治疗和 逃避免疫系统。尽管如此,我们对基因组的基本机械理解缺乏基本的理解 回应选择。一个主要未知的是自适应演变如何从 在许多可能的可能中。另一个主要未知的是遗传变异如何产生新的 选择的表型。实验进化为解决两个 我们知识上的这些显着差距。随着高通量生物学的进步,我们可以发展数百种 最初并行的数千代人的人口,对 实验参数。这种多功能技术使得可以通过 在自然种群中无法执行的实验。同时,实验进化 是功能基因组学的强大工具。通过识别对选择性响应的基因和途径 压力以及这些突变如何相互作用以改变表型,实验室进化实验确定 以前未知的细胞连接。在过去的五年中,我的实验室提高了机械性 了解适应性进化。未来的工作将决定遗传变化如何引起复杂 表型。在遗传背景和 在转移环境中。除了促进我们对适应性进化的理解外,我们还希望 基于我们的先前工作,以确定以前未知的核核,核质质和基因 环境互动。最后,我们将开发一种快速可靠的方法来执行多个回合 酵母中的汇集基因编辑,我们将使用此方法系统地测定遗传相互作用 其他方法遗漏了。通过将基因型与进化环境中的表型联系起来, 我们的工作将提供对复杂性状发展的机械理解。这项工作将进步 我们对适应性进化和复杂性状的遗传基础的理解 包括人类和人类病原体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Gregory I Lang的其他基金

Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
  • 批准号:
    10386335
    10386335
  • 财政年份:
    2018
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
  • 批准号:
    10590346
    10590346
  • 财政年份:
    2018
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
  • 批准号:
    10397048
    10397048
  • 财政年份:
    2018
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:
Mapping genetic interactions between growth-promoting mutations in yeast
绘制酵母促生长突变之间的遗传相互作用
  • 批准号:
    9912776
    9912776
  • 财政年份:
    2018
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:

相似国自然基金

基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
  • 批准号:
    82373646
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
  • 批准号:
    42377238
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
  • 批准号:
    42307038
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
  • 批准号:
    32301448
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
  • 批准号:
    52300210
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
  • 批准号:
    10549648
    10549648
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:
Bacteriology Core
细菌学核心
  • 批准号:
    10549642
    10549642
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
  • 批准号:
    10670613
    10670613
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:
Interrogating human anti-staphylococcal antibody responses for S. aureus vaccine insights
探究人类抗葡萄球菌抗体反应以获得金黄色葡萄球菌疫苗见解
  • 批准号:
    10826874
    10826874
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别:
Development of a model of Gonococcal conjunctivitis for vaccine evaluations
开发用于疫苗评估的淋菌性结膜炎模型
  • 批准号:
    10740430
    10740430
  • 财政年份:
    2023
  • 资助金额:
    $ 40.89万
    $ 40.89万
  • 项目类别: