New Catalysts and Strategies for Selective C–H Functionalization and Cycloaddition Reactions

选择性 C–H 官能化和环加成反应的新催化剂和策略

基本信息

项目摘要

Project Summary/Abstract Organic synthesis is a rate-limiting factor in drug discovery, and consequently, advances in synthetic methods relevant to bioactive molecule preparation can be a powerful driving force to accelerate the discovery of new small molecule therapeutics for unmet medical needs. Research in the Hilinski laboratory is focused on addressing unsolved challenges in catalysis and synthesis that have immediate relevance to the contemporary practice of drug discovery, and that have the potential for broad impact as widespread platforms for new reaction discovery and/or synthetic planning. We are also invested in the direct application of small molecule synthesis to drug discovery, in collaborative projects that use small molecules to engage new biological targets for cancer treatment. This MIRA application outlines our recent endeavors and future plans in two areas: (1) catalytic, selective C–H functionalization, and (2) novel cycloaddition reactions. In the first area, research in the field of intermolecular, site selective C(sp3)–H hydroxylation and amination has advanced considerably in recent years, but has reached a major barrier in the desire to transition from substrate-controlled selectivity to catalyst controlled selectivity. To address these and other challenges, we have established a program in organocatalytic atom-transfer C–H functionalization and over the past several years have shown that our catalytic platform, focused on iminium salt and amine catalysts, competes with or exceeds metal-catalyzed methods in reactivity and selectivity, and also that it has the flexibility to enable multiple types of atom transfer (i.e. both hydroxylation and amination). Having established this foundation, we are now beginning to better understand the unique mechanistic details of these reactions and the influence of catalyst structure on reactivity and selectivity. Our goals over the next five years are to use amine catalysis to override substrate control of C–H hydroxylation site selectivity and to develop enantioselective C–H hydroxylation methods, and to use iminium catalysis to expand both the scope and selectivity among benzylic, unactivated tertiary, and unactivated secondary C–H bonds in late-stage C–H amination applications. Distinct from our research on C–H functionalization, we have also established a program on the invention of new regioselective and stereoselective cycloaddition reactions targeting nitrogen-containing heterocycles and carbocycles appended to nitrogen-containing heterocycles, two major structural motifs in drug discovery. Described in this application is our recent discovery of Lewis acid catalysis of a virtually unexplored variant of the Diels-Alder reaction – one that uses vinylazaarenes as dienophiles. Over the next five years, we intend to pursue our long-term goal of establishing this as a strategy- level synthetic approach by expanding this chemistry to include hetero Diels-Alder reactions to form azaarene- appended aliphatic nitrogen heterocycles, and by developing enantioselective variants. The results of these future research plans will enable an expansion of the chemical space that can be explored for drug discovery.
项目摘要/摘要 有机合成是药物发现的限制因素,因此,合成方法的进展 与生物活性分子制备相关的可能是加速新发现的强大驱动力 针对未满足的医疗需求的小分子疗法。希林斯基实验室的研究重点是 解决与当代有直接相关的催化和合成中未解决的挑战 药物发现的实践,并且有可能作为新反应的宽度平台产生广泛影响 发现和/或合成计划。我们还投资于小分子合成的直接应用 在药物发现中,在使用小分子参与癌症的新生物学目标的协作项目中 治疗。此MIRA应用程序概述了我们最近在两个领域的努力和未来计划:(1)催化, 选择性C – H功能化和(2)新型的环加成反应。在第一个领域,该领域的研究 近年来,分子间的位点选择性C(SP3) - H羟基化和分析已仔细提前, 但在从基材控制的选择性过渡到催化剂的愿望方面已经达到了重大障碍 控制性的选择性。为了应对这些挑战,我们已经建立了一个有机催化的计划 Atom-Transfer C – H功能化以及过去几年都表明我们的催化平台, 专注于亚米盐和胺催化剂,与金属催化的方法竞争反应性 和选择性,并且具有启用多种原子转移的灵活性(即两者都羟基化 和胺化)。建立了这个基础后,我们现在开始更好地理解独特的 这些反应的机械细节以及催化剂结构对反应性和选择性的影响。我们的 未来五年的目标是利用胺催化来覆盖C – H羟基化位点的底物控制 选择性并开发对映选择性C – H羟基化方法,并使用亚米米催化来扩展 在二苯基,未激活的第三纪和未激活的次级C – H键之间的范围和选择性 晚期C – H胺化应用。与我们对C – H功能化的研究不同,我们也有 建立了有关新调节性选择性和立体选择性环加成反应的计划 靶向含氮的杂环和碳纤维的靶向附加到含氮的杂环上的 药物发现中的主要结构基序。在此应用中描述的是我们最近发现的刘易斯酸 催化了Diels-Alder反应的几乎意外变体 - 一种使用乙烯基芳族作为一种 二磷。在接下来的五年中,我们打算实现我们的长期目标,以确立这一战略 - 通过扩展该化学的水平合成方法,包括杂型主教 - alder反应以形成偶氮 加入脂肪族氮杂环,并通过开发对映选择性变体。这些结果 未来的研究计划将使可以探索用于药物发现的化学空间扩展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Michael Kenneth Hi...的其他基金

Organocatalytic Site-Selective C-H Bond Functionalization
有机催化位点选择性 C-H 键功能化
  • 批准号:
    9363624
    9363624
  • 财政年份:
    2017
  • 资助金额:
    $ 50.79万
    $ 50.79万
  • 项目类别:
Organocatalytic Site-Selective C-H Bond Functionalization
有机催化位点选择性 C-H 键功能化
  • 批准号:
    10190962
    10190962
  • 财政年份:
    2017
  • 资助金额:
    $ 50.79万
    $ 50.79万
  • 项目类别:

相似国自然基金

阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
  • 批准号:
    82302281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
  • 批准号:
    52304047
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
核苷酸代谢酶氧化修饰调控上皮干细胞命运在口腔白斑病光动力治疗复发中的机制与意义研究
  • 批准号:
    82330029
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
RNF31通过厚壁菌代谢产物3-氧代胆碱酸调控RORγ信号轴抑制Th17细胞分化—溃疡性结肠炎干预新靶点
  • 批准号:
    82360112
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
  • 批准号:
    32371222
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 50.79万
    $ 50.79万
  • 项目类别:
2023 RNA Nanotechnology Gordon Research Conference and Seminar
2023年RNA纳米技术戈登研究会议暨研讨会
  • 批准号:
    10598881
    10598881
  • 财政年份:
    2023
  • 资助金额:
    $ 50.79万
    $ 50.79万
  • 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
  • 批准号:
    10844877
    10844877
  • 财政年份:
    2023
  • 资助金额:
    $ 50.79万
    $ 50.79万
  • 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
  • 批准号:
    10603408
    10603408
  • 财政年份:
    2023
  • 资助金额:
    $ 50.79万
    $ 50.79万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 50.79万
    $ 50.79万
  • 项目类别: