Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
基本信息
- 批准号:10620291
- 负责人:
- 金额:$ 66.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAgeAntihypertensive AgentsAssessment toolAtherosclerosis Risk in CommunitiesBayesian AnalysisBayesian MethodBayesian learningBlood PressureCardiovascular DiseasesCardiovascular systemCholesterolClinicalCohort StudiesComplexComputer softwareDataData PoolingElderlyEstimation TechniquesFrail ElderlyFundingGoalsHealth PolicyInterventionInvestigationKnowledgeLife Cycle StagesLongitudinal cohort studyMachine LearningMethodologyMethodsMissionModelingMulti-Ethnic Study of AtherosclerosisNational Heart, Lung, and Blood InstituteOutcomePaperPathway interactionsPatternPopulationPredispositionPrevention strategyPropertyPublic HealthRaceResearchResearch PersonnelRisk EstimateRisk FactorsSample SizeSelection BiasSoftware ToolsSourceSpecific qualifier valueStandardizationStatistical MethodsStrategic visionStructureTimeTime StudyTreesUncertaintyUnited States National Institutes of HealthWeightWorkcardiovascular disorder preventioncardiovascular disorder riskcardiovascular healthcohortdata complexitydata integrationethnic diversityflexibilityfollow-uphealth dataimprovedinnovationmachine learning frameworkmachine learning methodnovelpopulation basedsoftware developmentsurvival outcometemporal measurementtreatment effectusabilityyoung adult
项目摘要
Project Summary
Population cohort studies funded by the National Institute of Health, including the Atherosclerosis Risk in Com-
munities (ARIC) Study and Multi-Ethnic Study of Atherosclerosis (MESA), are widely used in cardiovascular
research and have provided fundamental knowledge for cardiovascular disease (CVD) prevention strategies and
public health policies. Pooling data across multiple cohorts provides a unique opportunity for in-depth investiga-
tions of emerging CVD research questions, such as optimal blood pressure threshold values triggering initiation
of antihypertensive treatment for young adults, that heretofore would not have been possible. While forming a
fertile ground for innovative research, the methodological issues associated with the pooled cohorts data cannot
be as effectively addressed by existing statistical methods. There are three main analytic challenges. First, many
discrete or continuous longitudinal variables have missing values with various missing data patterns. Existing
methods either are susceptible to misspecification biases or do not provide coherent estimates of imputation un-
certainty, and cannot handle missing not at random. Second, current causal inference methods either require
aligned measurement time points or parametric assumptions about forms of causal pathways, neither of which
can be satisfied in complex longitudinal health data. Third, violations of the “sequential ignorability” assumption
embedded in causal inference methodology can be a potential source of bias. The sensitivity analysis methods
for time-varying confounding with censored survival outcomes are underdeveloped. To overcome these chal-
lenges and improve statistical and CVD research, we propose a suite of generalizable statistical methods utilizing
machine learning. We propose to develop a scalable Bayesian nonparametric (BNP) framework to impute con-
tinuous or discrete missing at random longitudinal covariates while providing coherent uncertainty intervals, and
address the missing not at random mechanism via sensitivity analysis. We will apply the developed method to
address missing data issues for several longitudinal CVD risk factors such as blood pressure, cholesterol levels
(Specific Aim 1); to develop a robust and computationally efficient BNP causal inference method (Specific Aim
2) and a new continuous-time marginal structural survival model from a Bayesian perspective (Specific Aim 3) to
study and validate the survival effects of time-varying antihypertensive treatments for young adults and the frail
elderly; to develop a flexible and interpretable survival sensitivity analysis method to assess the sensitivity of the
causal effect estimates to varying degrees of sequential unmeasured confounding (Specific Aim 4); and to create
usable R software packages for all proposed methods and develop tutorial papers and short courses to bridge
theoretical and practical knowledge and promote use of our methods (Specific Aim 5).
项目概要
由美国国立卫生研究院资助的人口队列研究,包括冠状动脉粥样硬化风险
社区(ARIC)研究和动脉粥样硬化多种族研究(MESA),广泛应用于心血管领域
研究并为心血管疾病(CVD)预防策略和提供了基础知识
公共卫生政策。汇集多个群体的数据为深入调查提供了独特的机会。
新兴心血管疾病研究问题的解决方案,例如触发启动的最佳血压阈值
对年轻人进行抗高血压治疗,这在以前是不可能的。
作为创新研究的沃土,与汇总队列数据相关的方法论问题不能
现有的统计方法可以有效解决三个主要的分析挑战。
离散或连续纵向变量具有各种现有缺失数据模式的缺失值。
方法要么容易受到错误指定偏差的影响,要么不能提供对插补的连贯估计
其次,当前的因果推理方法要么需要确定性,要么不能处理非随机的缺失。
对齐的测量时间点或关于因果路径形式的参数假设,两者都不是
可以在复杂的纵向健康数据中得到满足第三,违反了“顺序可忽略性”假设。
嵌入因果推理方法中的敏感性分析方法可能是潜在的偏差来源。
对于时变混杂与审查生存结果的克服这些挑战尚不成熟。
为了延长统计和 CVD 研究的长度并改进统计和 CVD 研究,我们提出了一套利用
我们建议开发一个可扩展的贝叶斯非参数(BNP)框架来估算con-
随机纵向协变量的连续或离散缺失,同时提供连贯的不确定性区间,以及
我们将通过敏感性分析来解决缺失的非随机机制。
解决血压、胆固醇水平等多个纵向 CVD 危险因素的数据缺失问题
(具体目标 1);开发一种稳健且计算高效的 BNP 因果推理方法(具体目标
2)以及从贝叶斯角度出发的新的连续时间边际结构生存模型(具体目标 3)
研究并验证时变抗高血压治疗对年轻人和体弱者的生存影响
开发一种灵活且可解释的生存敏感性分析方法来评估老年人的敏感性
对不同程度的连续未测量混杂因素进行因果效应估计(具体目标 4);
适用于所有建议方法的可用 R 软件包,并开发教程论文和短期课程来衔接
理论和实践知识并促进我们方法的使用(具体目标 5)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liangyuan Hu其他文献
Liangyuan Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liangyuan Hu', 18)}}的其他基金
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
- 批准号:
10445648 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Flexible Bayesian approaches to causal inference with multilevel survival data and multiple treatments
利用多级生存数据和多种治疗进行因果推理的灵活贝叶斯方法
- 批准号:
10442178 - 财政年份:2021
- 资助金额:
$ 66.68万 - 项目类别:
Flexible Bayesian approaches to causal inference with multilevel survival data and multiple treatments
利用多级生存数据和多种治疗进行因果推理的灵活贝叶斯方法
- 批准号:
10056850 - 财政年份:2020
- 资助金额:
$ 66.68万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 66.68万 - 项目类别:
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 66.68万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 66.68万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 66.68万 - 项目类别: