Cell Transitions during Bone Fracture Healing
骨折愈合过程中的细胞转变
基本信息
- 批准号:10754205
- 负责人:
- 金额:$ 58.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAbnormal CellAdoptedAdultAnimalsBindingBone InjuryBone callusCartilageCell CompartmentationCell Differentiation processCell LineageCell physiologyCellsCephalicChIP-seqChondrocytesCre lox recombination systemDataEmbryoEnvironmentEventFRAP1 geneFailureFibrosisFractureGenomicsIndividualInjuryKnockout MiceLabelMaintenanceMechanicsMediatingMetaplasiaMethodsMolecularMusNF1 geneNatural regenerationNeural Crest CellOsteoblastsOutcomePathway interactionsPeriosteal CellPeriosteumPhasePhysiologic OssificationPlayPopulationProcessProto-Oncogene Proteins c-aktPublishingRoleRunningSeriesSignal TransductionSirolimusSiteSystems BiologyTestingTissuesTranscriptional ActivationWorkbonebone fracture repaircell typedirected differentiationexperimental studyhealinginducible Creinjury and repairintramembranous bone formationloss of functionmTOR Inhibitormutantosteoblast differentiationosteochondral tissueosteogenicpaligenosisprogramsreconstitutionrecruitresponsestem cell differentiationstem cell divisionstem cell self renewalstem cellsstem-like celltranscription factorwound
项目摘要
Summary
Our understanding of cell lineages is currently being challenged. Cell plasticity appears to be more prevalent
than previously thought and cell fate switching, even among fully differentiated cells is being more fully
uncovered and understood. For example, ‘paligenosis’ is an emerging concept whereby fully differentiated cells
revert to a stem cell like state and give rise to a multitude of cell types in part due to mTOR signaling. These
observations have important implications for bone fracture healing. Multiple differentiation events occur for the
bone to heal. Initially, the mechanical environment directs cell fate decisions within the periosteum. Mechanical
stability directs differentiation of osteoblasts and intramembranous ossification, while instability directs
differentiation of chondrocytes and endochondral ossification. Concomitantly, the stem cell compartment is
maintained, and a renewed stem cell pool will eventually populate the periosteum that covers the new bone. At
later stages of endochondral ossification chondrocytes become osteoblasts as the cartilage transforms into
bone. Disruptions to these distinct events can lead to delayed or failed healing, which is often associated with
increased fibrosis of the fracture site. In this application we propose to examine the process of differentiation of
periosteal cells in response to the mechanical environment (Aim1), to assess transformation of chondrocytes
into osteoblasts (Aim 2), and maintenance of the stem cell pool and population of the newly formed periosteum
by stem cells (Aim 3). This work utilizes a systems biology approach to examine molecular mechanisms that
underlie these cell fate decisions, and in parallel a more standard hypothesis-based approach. We focus on
the role of Nf1 and Sox2 during differentiation of periosteal cells and the transformation of chondrocytes into
osteoblasts. Our preliminary data show that deletion of Nf1 from the developing periosteum leads to a fibrous
non-union after fracture, and we focus on the role of mTOR in mediating these outcomes. Our data also show
that Sox2 is necessary for endochondral ossification, and we test the requirement of Sox2 in hypertrophic
chondrocytes for transformation to osteoblasts. Finally, we examine a role for Sox2 in maintaining the stem cell
compartment in the periosteum using a set of loss-of-function experiments in serial fracture repair. In summary,
combining a systems biology approach with hypothesis testing is a powerful way to develop deep
understanding of the processes regulating cell differentiation during fracture healing.
概括
我们对细胞谱系的理解目前正受到挑战。细胞可塑性似乎更为普遍。
细胞命运的转变比想象的要早,甚至在完全分化的细胞之间也正在更充分地发生
例如,“异体分化”是一个新兴概念,其中细胞完全分化。
恢复到干细胞样状态并产生多种细胞类型,部分原因是 mTOR 信号传导。
观察结果对骨折愈合具有重要意义。
最初,机械环境决定骨膜内的细胞命运。
稳定性指导成骨细胞的分化和膜内骨化,而不稳定则指导成骨细胞的分化和膜内骨化。
软骨细胞的分化和软骨内骨化同时进行。
维持,更新的干细胞库最终将填充覆盖新骨的骨膜。
软骨内骨化的后期阶段,随着软骨转变为成骨细胞,软骨细胞变成成骨细胞
这些不同事件的破坏可能导致愈合延迟或失败,这通常与骨愈合有关。
骨折部位纤维化增加 在本申请中,我们建议检查骨折部位的分化过程。
骨膜细胞对机械环境的反应(目标1),以评估软骨细胞的转化
成骨细胞(目标 2),并维持干细胞库和新形成的骨膜群
干细胞(目标 3)利用系统生物学方法来检查分子机制。
这些细胞命运决定的基础,同时我们关注的是更标准的基于假设的方法。
Nf1 和 Sox2 在骨膜细胞分化和软骨细胞转化过程中的作用
我们的初步数据表明,从发育中的骨膜中删除 Nf1 会导致纤维化。
骨折后骨不连,我们的数据也显示了 mTOR 在调节这些结果中的作用。
Sox2 对于软骨内骨化是必需的,我们测试了肥厚性中 Sox2 的需要
最后,我们研究了 Sox2 在维持干细胞中的作用。
在连续骨折修复中使用一组功能丧失实验来确定骨膜室的功能。
将系统生物学方法与假设检验相结合是开发深度学习的有效方法
了解骨折愈合过程中调节细胞分化的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RALPH S MARCUCIO其他文献
RALPH S MARCUCIO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RALPH S MARCUCIO', 18)}}的其他基金
Transcriptional regulatory landscapes underlying FEZ Formation
自由经济区形成的转录监管格局
- 批准号:
10216391 - 财政年份:2020
- 资助金额:
$ 58.14万 - 项目类别:
Transcriptional regulatory landscapes underlying FEZ Formation
自由经济区形成的转录监管格局
- 批准号:
10358628 - 财政年份:2020
- 资助金额:
$ 58.14万 - 项目类别:
Transcriptional regulatory landscapes underlying FEZ Formation
自由经济区形成的转录监管格局
- 批准号:
10581562 - 财政年份:2020
- 资助金额:
$ 58.14万 - 项目类别:
Transcriptional regulatory landscapes underlying FEZ Formation
自由经济区形成的转录监管格局
- 批准号:
10577995 - 财政年份:2020
- 资助金额:
$ 58.14万 - 项目类别:
Effects of Aging on Macrophages and Bone Regeneration
衰老对巨噬细胞和骨再生的影响
- 批准号:
8738567 - 财政年份:2013
- 资助金额:
$ 58.14万 - 项目类别:
Effects of Aging on Macrophages and Bone Regeneration
衰老对巨噬细胞和骨再生的影响
- 批准号:
8881043 - 财政年份:2013
- 资助金额:
$ 58.14万 - 项目类别:
Effects of Aging on Macrophages and Bone Regeneration
衰老对巨噬细胞和骨再生的影响
- 批准号:
9069665 - 财政年份:2013
- 资助金额:
$ 58.14万 - 项目类别:
Effects of Aging on Macrophages and Bone Regeneration
衰老对巨噬细胞和骨再生的影响
- 批准号:
8616534 - 财政年份:2013
- 资助金额:
$ 58.14万 - 项目类别:
MOLECULAR BASIS OF TISSUE INTERACTIONS THAT REGULATE CRANIOFACIAL DEVELOPMENT
调节颅面发育的组织相互作用的分子基础
- 批准号:
7249157 - 财政年份:2007
- 资助金额:
$ 58.14万 - 项目类别:
MOLECULAR BASIS OF TISSUE INTERACTIONS THAT REGULATE CRANIOFACIAL DEVELOPMENT
调节颅面发育的组织相互作用的分子基础
- 批准号:
7418921 - 财政年份:2007
- 资助金额:
$ 58.14万 - 项目类别:
相似国自然基金
AhR通过泛素化降解Rev-erb-α/β引起肾小管上皮细胞脂质合成异常促进肾脏纤维化的机制研究
- 批准号:82300834
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
茯苓-泽泻药对通过调控HSD17B13/ATGL介导的肝细胞脂噬改善血脂异常脂代谢的作用机制研究
- 批准号:82305178
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜕膜基质细胞外泌体通过RNA可变剪接及ac4C修饰改善不明原因复发性流产免疫耐受异常的机制研究
- 批准号:82371676
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
选择性布鲁顿酪氨酸激酶抑制剂通过BTK/c-myc/谷氨酰胺代谢轴纠正B细胞异常代谢并恢复ITP免疫耐受的机制研究
- 批准号:82370131
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
异常激活的小胶质细胞通过上调CTSS抑制微血管特异性因子MFSD2A表达促进1型糖尿病视网膜病变的免疫学机制研究
- 批准号:82370827
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI
将临床组织微观结构成像作为大口径 3T MRI 的诊断工具
- 批准号:
10640750 - 财政年份:2023
- 资助金额:
$ 58.14万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 58.14万 - 项目类别:
A Novel Radiometry‐Guided Ablation Catheter to Reliably Treat Barrett's Esophagus
一种新颖的放射测量技术——可靠地治疗巴雷特食管的引导消融导管
- 批准号:
10385615 - 财政年份:2021
- 资助金额:
$ 58.14万 - 项目类别:
The role of RGP1 in extracellular matrix secretion and chondrocyte cell shape development
RGP1在细胞外基质分泌和软骨细胞形态发育中的作用
- 批准号:
10452544 - 财政年份:2020
- 资助金额:
$ 58.14万 - 项目类别:
The role of RGP1 in extracellular matrix secretion and chondrocyte cell shape development
RGP1在细胞外基质分泌和软骨细胞形态发育中的作用
- 批准号:
10292936 - 财政年份:2020
- 资助金额:
$ 58.14万 - 项目类别: