Single-cell Transcriptomic Analysis of Cell Type Plasticity in Barrel Cortex of Normal and Autism Model Mice
正常和自闭症模型小鼠桶状皮层细胞类型可塑性的单细胞转录组分析
基本信息
- 批准号:10750812
- 负责人:
- 金额:$ 4.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ASD patientAnatomyBrainCell NucleusCellsClassificationComputational BiologyDevelopmentDimensionsDiseaseDisease modelElectrophysiology (science)EmbryoEndowmentFMR1Fluorescent in Situ HybridizationFragile X SyndromeFunctional disorderGene ExpressionGenesGlutamatesGraphHealthHeterogeneityHistologyHumanImpairmentIntellectual functioning disabilityKnock-outKnockout MiceKnowledgeLifeMachine LearningMapsMeasurementModelingMolecularMorphologyMusNeocortexNeurodevelopmental DisorderNeuronsPathologyPatternPhysical FunctionPhysiologicalReactionResolutionResourcesRoleSensorimotor functionsSensorySensory DeprivationSeriesSocial DevelopmentSocial FunctioningSomatosensory CortexSpecific qualifier valueStereotypingStructureSynapsesTactileTestingTherapeutic InterventionTimeTissuesTransgenic MiceValidationVibrissaeVisionVisualWild Type MouseWorkarea striataautism spectrum disorderbarrel cortexcell typecognitive functioncritical perioddeprivationdifferential expressionexperienceexperimental studyimprovedmRNA sequencingmachine learning pipelinemouse modelneocorticalneural circuitpostnatalpostnatal developmentprogramsresponsesensory cortexsingle nucleus RNA-sequencingsomatosensorysupervised learningsynaptogenesistargeted treatmenttemporal measurementtranscriptomicsunsupervised learning
项目摘要
PROJECT SUMMARY
During postnatal developmental stages known as critical periods (CPs), sensory experience acts upon a
genetically-hardwired connectivity map to sculpt the neocortical circuitry that enables mammalian functioning.
Neurodevelopmental disorders such as autism disrupt this experience-dependent plasticity and compromise
the development of social, cognitive, and physical function. Since autism spectrum disorder (ASD) patients
suffer from tactile hyper- or hypo-sensitivity that may reflect abnormal development of sensory circuits, ASD is
commonly studied in primary somatosensory cortex (S1). In addition, the mouse whisker S1 is a somatotopic
map of the mouse whisker pad, so manipulation of specific whiskers induces observable functional changes in
the corresponding barrels of S1. Morphological and physiological studies of experience-dependent plasticity in
S1 have revealed several CPs and elucidated the influence of ASD on their emergence in mouse models of
autism. However, the gene expression programs underlying experience-dependent plasticity and the
influence of ASD on it remain unknown at the resolution of S1’s 100+ transcriptomically distinct cell
types. Since these cell types form the circuits that carry out sensory function, it is important to study the
influence of experience and ASD on their maturation. This project combines single-nucleus mRNA sequencing
(snRNA-seq) and computational biology approaches rooted in machine learning with temporally resolved
whisker manipulations and a mouse model of ASD to test two hypotheses. To test the hypothesis that whisker
experience is required for cell type development in S1, snRNA-seq will be performed at several time points
spanning two established CPs in whisker-deprived and control mice. Unsupervised and supervised machine
learning approaches such as dimensionality reduction, clustering, graph embedding, and classification will be
used to identify transcriptomic cell types at each time point and assess the influence of whisker experience on
their maturation. Hybridization chain reaction fluorescence in situ hybridization (HCR-FISH) will enable the
validation of cell type-specific development patterns. To test the hypothesis that ASD disrupts
experience-dependent cell type maturation, snRNA-seq will be performed on Fmr1 KO mice under whisker
deprivation and control conditions. Fmr1 KO models Fragile X syndrome, the most frequent monogenic cause
of intellectual disability and ASD in humans. While Fmr1 deletion has been shown to delay the maturation of
circuits in S1 during a CP, its influence on experience-dependent maturation of S1 cell types remains unknown.
Comparing gene expression profiles and cell types between KO and wild-type mice with and without
whisker-deprivation will reveal transcriptomic signatures of ASD and pinpoint the cell types in which its effects
are localized. Knowledge generated from this study about the manifestation of ASD in transcriptomic cell types
will improve understanding of ASD pathology and reveal candidate cell types for targeted treatment.
项目摘要
在产后发育阶段被称为关键时期(CPS),感官经验作用于
基因连接图雕刻的新皮层电路,以实现哺乳动物的功能。
自闭症等神经发育障碍破坏了这种依赖经验的可塑性和妥协
社会,认知和身体机能的发展。由于自闭症谱系障碍(ASD)患者
遭受触觉过度或低敏感性,可能反映了感觉电路异常发育,ASD是
通常在原发性体感皮质(S1)中进行研究。此外,小鼠晶须S1是体体
小鼠晶须垫的地图,因此操纵特定晶须会引起可观察到的功能变化
S1的相应桶。经验依赖性可塑性的形态学和物理研究
S1揭示了几个CP,并阐明了ASD对它们在小鼠模型中出现的影响
自闭症。但是,基因表达程序是基于经验依赖性可塑性和
在S1的100+转录不同细胞的分辨率下,ASD对其对其的影响仍然未知
类型。由于这些细胞类型形成了执行感官功能的电路,因此研究
经验和ASD对成熟的影响。该项目结合了单核mRNA测序
(SNRNA-SEQ)和计算生物学方法植根于机器学习,并暂时解决
晶须操纵和ASD小鼠模型检验两个假设。测试晶须的假设
S1中的细胞类型开发需要经验,将在几个时间点进行SNRNA-SEQ
跨越两个在晶须剥落和控制小鼠中建立的CP。无监督和监督的机器
诸如降低维度,聚类,图形嵌入和分类之类的学习方法将是
用于在每个时间点识别转录组细胞类型,并评估晶须体验的影响
他们的成熟。杂交链反应荧光原位杂交(HCR-FISH)将使
验证细胞类型特异性开发模式。测试ASD破坏的假设
依赖经验的细胞类型成熟,SNRNA-SEQ将在晶须下进行FMR1 KO小鼠进行
剥夺和控制条件。 FMR1 KO模型脆弱的X综合征,最常见的单基因原因
人类的智力残疾和ASD。虽然已显示FMR1删除已延迟成熟
CP期间S1中的电路对S1细胞类型的经验依赖性成熟的影响仍然未知。
比较有或没有的KO和野生型小鼠之间的基因表达谱和细胞类型
晶须剥夺将揭示ASD的转录组特征,并查明其效果的细胞类型
是本地化的。这项研究对转录组细胞类型中ASD的表现产生的知识
将提高对ASD病理学的理解,并揭示针对靶向治疗的候选细胞类型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Salwan Butrus其他文献
Salwan Butrus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the synaptic interactome of the high risk autism gene ANK2
阐明高风险自闭症基因 ANK2 的突触相互作用组
- 批准号:
10391766 - 财政年份:2022
- 资助金额:
$ 4.38万 - 项目类别:
Rescue of Cul3 haploinsufficiency phenotypes with CRISPR-mediated Cul3 activation
通过 CRISPR 介导的 Cul3 激活拯救 Cul3 单倍体不足表型
- 批准号:
10527778 - 财政年份:2022
- 资助金额:
$ 4.38万 - 项目类别:
A Circuit Mechanism for the Development of Cortico-cortical Connectivity
皮质-皮质连接发展的电路机制
- 批准号:
10469418 - 财政年份:2020
- 资助金额:
$ 4.38万 - 项目类别:
A Circuit Mechanism for the Development of Cortico-cortical Connectivity
皮质-皮质连接发展的电路机制
- 批准号:
10680437 - 财政年份:2020
- 资助金额:
$ 4.38万 - 项目类别: