Role of TRIM46 in neuronal polarity in vivo
TRIM46 在体内神经元极性中的作用
基本信息
- 批准号:10747819
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ANK3 geneAction PotentialsAxonAxonal TransportBehaviorBehavioralBrainCellsComplexCytoskeletal FilamentsCytoskeletonDataDefectDendritesDependovirusDevelopmentDiffusionEnvironmentExhibitsFascicleFoundationsGatekeepingImpairmentIn VitroInjectionsInjuryIon ChannelKnock-outKnockout MiceLabelMemoryMethodsMicroscopyMicrotubulesMolecularMorphologyMovementMusMuscleMuscle fasciculationNerve CrushNervous SystemNeurodegenerative DisordersNeurodevelopmental DisorderNeuronsPlayPopulationProcessProteinsPublishingReportingResolutionRoleSpecific qualifier valueStructureTRIM MotifTestingThinnessToxic effectTrainingTransmission Electron MicroscopyWorkaxon regenerationdensityexperienceexperimental studyimmunoreactivityin uteroin vivoinsightknock-downloss of functionmigrationmolecular polaritypreventprotein distributionrecruitsciatic nervesmall hairpin RNAsuperresolution microscopytraffickingtransmission process
项目摘要
PROJECT SUMMARY.
From movement to memory, the complex and wide-ranging tasks performed by the nervous system depend on
the polarization of billions of neurons into two functionally distinct subcellular compartments: dendrites, which
receive most of the input into the neuron, and the axon, which transmits information to other cells in the form of
an action potential. Two powerful contributors to neuronal polarity are 1) the axon initial segment (AIS), a domain
at the beginning of the axon that initiates action potentials, and 2) microtubules (MTs), cytoskeletal filaments
involved in axon outgrowth and cargo trafficking1,2. Disrupting either of these impairs the other and causes broad
downstream defects in neuronal polarity and function3–6, suggesting that the interplay between these structures
is a key regulator of neuronal polarity. Intriguingly, MTs within the AIS form bundles, called “fascicles”, that are
rarely observed outside the AIS7,8. This unique organization supports the idea that the AIS and MTs work together
to control neuronal polarity. Therefore, investigating MT fasciculation could unlock new insights into how neurons
establish and maintain polarity, as well as how that process might go awry in neurodevelopmental and
neurodegenerative disorders. Though AIS MT fasciculation was first observed over 50 years ago7,8, little
progress has been made in determining its function, largely because a lack of candidates for the driver of MT
fasciculation made loss-of-function studies impossible. However, a recent breakthrough occurred with the
discovery of the protein Tripartite Motif Containing 46 (TRIM46) at the AIS9. TRIM46 localizes to AIS MTs, and
TRIM46-deficient cultured neurons lack AIS MT fasciculation9,10. They also exhibit impaired AIS formation and a
range of defects in axonal outgrowth, protein distribution, and MT orientation, suggesting that TRIM46 is required
for both AIS MT fasciculation and neuronal polarity more broadly9. However, these exciting claims are based on
TRIM46 knockdown by shRNA, mostly in cultured neurons, so the observed defects could be attributed to shRNA
toxicity or the artificial culture environment. No work has been done to investigate TRIM46 knockout in vivo. This
project will leverage the Rasband lab’s extensive experience with the in vivo study of the AIS to fill this gap. The
objective of this proposal is to use TRIM46 knockout mice to determine the role of TRIM46 in the nervous system
and test the specific hypothesis that TRIM46 is required for AIS MT fasciculation and neuronal polarity in vivo.
The proposed experiments will use immunostaining and high-resolution microscopy methods to determine the
consequences of TRIM46 knockout from neuronal ultrastructure to behavior and in the contexts of development
and injury. Aim 1 will determine the role of TRIM46 in AIS formation, ultrastructure, and MT fasciculation. Aim 2
will determine the role of TRIM46 in neuronal morphological, molecular, and MT polarity. Aim 3 will determine
the consequences of TRIM46 knockout on neuronal migration, axon regeneration, and behavior. Completion of
this project will reveal the function of TRIM46 at the convergence of the AIS and MTs from which neuronal
polarity emerges.
项目摘要。
从运动到记忆,神经系统执行的复杂而广泛的任务取决于
数十亿个神经元极化成两个功能不同的亚细胞区室:树突,
接收大部分输入到神经元和轴突,轴突以以下形式将信息传输到其他细胞:
神经极性的两个重要贡献者是 1) 轴突初始段 (AIS),一个域。
位于启动动作电位的轴突起始处,以及 2) 微管 (MT)、细胞骨架丝
参与轴突生长和货物贩运1,2。破坏其中任何一个都会损害另一个并导致广泛的后果。
神经极性和功能的下游缺陷3-6,表明这些结构之间的相互作用
有趣的是,AIS 内的 MT 形成束,称为“束”。
在 AIS 之外很少观察到7,8 这个独特的组织支持 AIS 和 MT 协同工作的想法。
因此,研究 MT 束颤可以解锁神经元如何控制的新见解。
建立和维持极性,以及该过程如何在神经发育和发育过程中出错
尽管 AIS MT 束震在 50 多年前首次被观察到7,8,但很少见。
其确定功能取得了进展,很大程度上是因为缺乏 MT 驾驶员候选人
肌束使功能丧失研究变得不可能。然而,最近出现了突破。
在 AIS9 上发现含有 46 的三重基序 (TRIM46),TRIM46 定位于 AIS MT,以及
TRIM46 缺陷的培养神经元缺乏 AIS MT 束化9,10,它们还表现出 AIS 形成受损和 AIS 形成受损。
轴突生长、蛋白质分布和 MT 方向的一系列缺陷,表明需要 TRIM46
然而,这些令人兴奋的主张是基于更广泛的 AIS MT 束颤和神经极性9。
TRIM46 通过 shRNA 敲低,主要发生在培养的神经元中,因此观察到的缺陷可能归因于 shRNA
尚未开展研究体内 TRIM46 敲除的毒性或人工培养环境。
该项目将利用 Rasband 实验室在 AIS 体内研究方面的丰富经验来填补这一空白。
该提案的目的是使用 TRIM46 敲除小鼠来确定 TRIM46 在神经系统中的作用
并测试TRIM46是体内AIS MT束颤和神经极性所必需的具体假设。
拟议的实验将使用免疫染色和高分辨率显微镜方法来确定
TRIM46 敲除从神经超微结构到行为以及发育背景的后果
目标 1 将确定 TRIM46 在 AIS 形成、超微结构和 MT 束颤中的作用。
将决定 TRIM46 在神经元形态、分子和 MT 极性中的作用。
TRIM46 敲除对神经迁移、轴突再生和行为完成的影响。
该项目将揭示 TRIM46 在 AIS 和 MT 汇合处的功能,其中神经元
极性出现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allison Jacqueline Melton其他文献
Allison Jacqueline Melton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
- 批准号:
10405021 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
RNA regulatory networks in neuronal cell type diversity and function
神经元细胞类型多样性和功能中的 RNA 调控网络
- 批准号:
10342485 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
- 批准号:
10275804 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
RNA Regulatory Networks in Neuronal Cell Type Diversity and Function
神经元细胞类型多样性和功能中的 RNA 调控网络
- 批准号:
10531908 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Convergent mechanisms for neurodevelopmental disorder genes
神经发育障碍基因的趋同机制
- 批准号:
10569594 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别: