Polysaccharide putty formulations for tissue regeneration
用于组织再生的多糖腻子配方
基本信息
- 批准号:10627055
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcetatesAddressBiocompatible MaterialsBiological AssayBone DensityBone MatrixBone RegenerationBone TissueBone TransplantationCalvariaCell Culture TechniquesCelluloseCephalicCeramicsClinicalComplementComplexCoupledDefectDevelopmentDiffusionDrug or chemical Tissue DistributionEconomic BurdenEnabling FactorsEnsureEquilibriumExcipientsExtracellular MatrixFDA approvedFormulationFractureFutureGenerationsGrowthGrowth FactorHydrogelsImpaired healingIn VitroKnowledgeMechanicsMesenchymal Stem CellsModelingMoldsNanotubesNatural regenerationOryctolagus cuniculusOsteoblastsOsteoclastsOsteogenesisPharmaceutical PreparationsPhysiologic pulsePhysiologicalPlantsPolymersPolymethyl MethacrylatePolysaccharidesPorosityPropertyProteinsResearchShapesSiteSolubilitySterilizationSystemTechnologyTemperatureTestingTimeTime FactorsTissuesVariantVascularizationVertebral columnWeight-Bearing stateWorkbiomaterial compatibilitybonebone engineeringbone healingbone repairbone strengthcalcium phosphatecell behaviorclaycomparison controlcortical bonecraniofacialdemineralizationdesigndynamic systemefficacy testingflat boneflexibilityhalloysiteimplantable deviceimplantationin vivoinnovationlong bonemouse modelnanonovelphthalatesrelease factorrepairedscaffoldstem cell deliverysubcutaneousthree dimensional structuretissue regenerationtissue repairulna
项目摘要
Project Summary/Abstract
The broad, long-term objectives of this proposal are to enhance the utility of cellulose-based biomaterials for
tissue repair by developing and evaluating a new and innovative composite that address current limitations.
Bacterial cellulose hydrogels and extracellular matrices have shown excellent regeneration capabilities in
multiple tissue types. However, these materials lack mechanical strength and degradation features needed for
specific applications such as bone repair, and have limited options for storage, handling, and sterilization. Plant-
derived cellulose in its derivative cellulose acetate (CA) form is capable of creating mechanically competent
porous scaffolds that are effective in bone regeneration. However, premade CA scaffolds with defined sizes,
shapes, and pore properties present challenges in adapting to complex bone defects. Additionally, the relatively
slow degradation rate of cellulose/CA can limit its ability to control factor release and heal bone. Combining CA
with CA phthalate (CAP) and nanoclay (NC) has the potential to address some of these weaknesses. This
cellulose-based composite forms a putty that can be molded into complex shapes and becomes strong as it
hardens, making it adaptable to diverse bone defects. Under physiologic conditions, CAP erodes before the
slower-degrading CA matrix, enabling a dynamic system that generates interconnected pores and tunable
growth factor release profiles and degradation. A CA/CAP/NC composite allows flexible incorporation of multiple
bioactive factors for varied effects: within CA for early, sustained release; within CAP for pulsed release; and/or
into NC embedded within the CA/CAP for delayed, sustained release. This also allows factors to be released in
parallel and/or sequentially. Detailed, long-term in vitro and in vivo characterizations of this cellulose biomaterial,
including its ability to balance strength and porosity and the effects of osteoclasts on its degradation, remain
knowledge gaps for advancing this transformative and natural biomaterial platform. Based on current knowledge,
it is hypothesized that this dynamic cellulose-based putty will impart composition-dependent changes of strength
and erosion in 3D microenvironments leading to varied bioactive factor release rates, vasculature development,
and tissue ingrowth during bone repair. This will be tested in four Specific Aims: Aim 1: Characterize
physicochemical and release properties of novel cellulose derivatives and compositions in vitro. Aim 2: Evaluate
biocompatibility and bioactivity of released molecules in an in vivo subcutaneous implantation model. Aim 3:
Evaluate cellular effects of putty formulations with early to long-term release profiles on a cranial flat-bone healing
defect. Aim 4: Assess putty formulations with early to long-term release profiles on bone healing at a load-
bearing site in a critical-sized long-bone defect in rabbit ulna. These studies will address several knowledge gaps
for using cellulose biomaterials in bone healing. If this enabling putty technology is successful, it may be
transformative to the field and adapted for other repair challenges in bone as well as a coating for biomedical
implants.
项目概要/摘要
该提案的广泛、长期目标是增强纤维素基生物材料的实用性
通过开发和评估解决当前局限性的新型创新复合材料来修复组织。
细菌纤维素水凝胶和细胞外基质在以下方面表现出优异的再生能力
多种组织类型。然而,这些材料缺乏机械强度和降解特性所需的
骨修复等特定应用,并且存储、处理和灭菌的选择有限。植物-
衍生纤维素醋酸酯 (CA) 形式的衍生纤维素能够产生机械性能
多孔支架可有效促进骨再生。然而,具有规定尺寸的预制 CA 支架,
形状和孔隙特性对适应复杂的骨缺损提出了挑战。另外,相对
纤维素/CA 的缓慢降解速度会限制其控制因子释放和愈合骨骼的能力。结合CA
邻苯二甲酸酯 (CAP) 和纳米粘土 (NC) 的组合有可能解决其中一些弱点。这
纤维素基复合材料形成腻子,可以模制成复杂的形状,并且随着它的形成而变得坚固
变硬,使其能够适应不同的骨缺损。在生理条件下,CAP 在
降解较慢的 CA 基质,实现生成互连孔和可调的动态系统
生长因子释放曲线和降解。 CA/CAP/NC 复合材料允许灵活地结合多种
具有不同作用的生物活性因子:在CA内用于早期、持续释放;在 CAP 内进行脉冲释放;和/或
进入嵌入 CA/CAP 内的 NC 中,以实现延迟、持续释放。这也使得因素得以释放
并行和/或顺序。这种纤维素生物材料的详细、长期的体外和体内表征,
包括其平衡强度和孔隙率的能力以及破骨细胞对其降解的影响,仍然
推进这一变革性天然生物材料平台的知识差距。根据现有知识,
据推测,这种动态纤维素基腻子将带来与成分相关的强度变化
3D 微环境中的侵蚀和侵蚀导致不同的生物活性因子释放速率、脉管系统发育、
以及骨修复过程中的组织向内生长。这将在四个具体目标中进行测试: 目标 1:表征
新型纤维素衍生物和组合物的体外理化和释放特性。目标 2:评估
体内皮下植入模型中释放分子的生物相容性和生物活性。目标 3:
评估具有早期到长期释放曲线的腻子配方对颅骨扁平骨愈合的细胞影响
缺点。目标 4:评估油灰配方的早期至长期释放曲线对骨愈合的影响
兔尺骨临界尺寸长骨缺损的承载部位。这些研究将解决一些知识差距
用于在骨愈合中使用纤维素生物材料。如果这种赋能腻子技术成功的话,可能会
对该领域具有变革意义,并适应骨骼的其他修复挑战以及生物医学涂层
植入物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangamesh Gurappa Kumbar其他文献
Sangamesh Gurappa Kumbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangamesh Gurappa Kumbar', 18)}}的其他基金
Engineered Matrices with Electrical and Chemical Stimulation for Peripheral Nerve Repair
用于周围神经修复的具有电和化学刺激的工程基质
- 批准号:
10592729 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
相似国自然基金
微囊泡介导肺泡上皮祖细胞醋酸盐代谢重编程向AT2细胞分化促进ARDS炎症修复的作用机制
- 批准号:82360020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
肝癌微环境富集醋酸盐增强内皮细胞乙酰化修饰并促进血管生成
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
络合萃取法提取生物油酚类化合物的效能及机理研究
- 批准号:21206142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
- 批准号:
10836298 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Evaluating the Mechanisms of Afferent Renal Nerve Ablation as a Treatment for Hypertension
评估传入肾神经消融治疗高血压的机制
- 批准号:
10604700 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别: