Automated microscope platform with improved imaging and accurate neuron reconstruction capabilities for high-throughput studies of neuroregeneration

自动化显微镜平台具有改进的成像和精确的神经元重建能力,适用于神经再生的高通量研究

基本信息

  • 批准号:
    10626683
  • 负责人:
  • 金额:
    $ 49.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The mammalian central nervous system typically fails to regenerate after injury, leading to incurable conditions with immense healthcare burdens. An exception is a remarkable effect called lesion conditioning, where injury to a neuron’s peripheral fiber activates cellular processes to greatly enhance neuroregeneration. Exploiting this “conditioned” form of regeneration for therapy requires a clear understanding of its underlying mechanisms, which is still lacking despite intense research in mammalian systems. Specifically, there is a knowledge gap regarding the impact of neuron type, morphology, and connectivity on regeneration. An in vivo approach in the worm C. elegans can reveal the cellular mechanisms underlying conditioned regeneration by femtosecond laser surgery and high-precision microscopy of single neuronal fibers. Three genes identified in the worm also modulate mammalian lesion conditioning, demonstrating that this approach can discover key conserved mechanisms. Even though this approach is effective at examining single genes or mechanisms, its manual execution precludes it from defining regenerative capacity across multiple neuron types and surgery locations. Thus, there is a critical need to accelerate imaging and laser surgery to comprehensively study regeneration. The overall objectives of the proposed project are to optimize an automated microscope platform and validate it by broadly testing many neuron types in C. elegans for conditioned regeneration. The rationale for this project is that an automated platform will permit large-scale regeneration studies that are currently impractical but required to fully map regenerative pathways. The objectives will be achieved by the following Specific Aims: 1) Improve image contrast to permit computer visualization of neurites. 2) Develop a real-time machine learning approach for automated neuron reconstruction. 3) Assess regenerative capacity in a broad range of neuron types in C. elegans. Work for Aim 1 will control the sample illumination and apply novel, real-time image processing to improve the contrast between neurons and their background. In Aim 2, these improved images will be reversibly compressed, computationally enhanced, reconstructed into a neuron model, and annotated for surgery. In Aim 3, the integrated platform will be used to perform surgery and reimage neurites in many neuron types in C. elegans to examine the role of key genes in regeneration. Innovative aspects of the proposed project include: an invertebrate model for lesion conditioning, new optical methods for improving imaging contrast, and novel machine learning techniques for real-time neuronal reconstruction. The expected outcomes of the proposed study are deep insights into the fundamental genetic and cellular mechanisms that determine the ability to execute conditioned regeneration and the validation of an automated microscope platform for high throughput imaging and surgery. These results are significant because they will establish important drivers of regeneration in the central nervous system, including potential therapeutic targets that could effectively treat currently incurable injuries and diseases of the nervous system.
项目概要/摘要 哺乳动物的中枢神经系统在受伤后通常无法再生,从而导致无法治愈的疾病 一个例外是一种称为损伤调节的显着效果,其中损伤。 神经元的周围纤维激活细胞过程,从而大大增强神经再生。 用于治疗的“条件”再生形式需要清楚地了解其潜在机制, 尽管对哺乳动物系统进行了大量研究,但仍然缺乏这一点,具体而言,存在知识差距。 关于神经元类型、形态和连接性对再生的影响的体内方法。 线虫可以通过飞秒激光揭示条件再生的细胞机制 手术和高精度显微镜检查还在线虫中发现了三个基因。 调节哺乳动物病变调理,证明这种方法可以发现关键保守的 尽管这种方法在检查单个基因或机制方面很有效,但它的手册。 执行使其无法定义多种神经元类型和手术位置的再生能力。 因此,迫切需要加速成像和激光手术以全面研究再生。 拟议项目的总体目标是优化自动化显微镜平台并对其进行验证 通过广泛测试秀丽隐杆线虫中的多种神经元类型进行条件再生。 自动化平台将允许进行目前不切实际但必要的大规模再生研究 全面绘制再生途径。目标将通过以下具体目标来实现:1) 改进。 图像对比度以允许神经突的计算机可视化 2) 开发实时机器学习方法。 3) 评估 C 中各种神经元类型的再生能力。 Work for Aim 1 将控制样本照明并应用新颖的实时图像处理。 提高神经元与其背景之间的对比度,在目标 2 中,这些改进的图像将是可逆的。 压缩、计算增强、重建为神经元模型,并为手术进行注释。 3,该集成平台将用于对线虫中许多神经元类型的神经突进行手术和重新成像。 线虫研究关键基因在再生中的作用,该项目的创新方面包括: 用于病变调节的无脊椎动物模型、用于提高成像对比度的新光学方法以及新颖的 用于实时神经重建的机器学习技术。所提出的预期结果。 研究深入了解了决定能力的基本遗传和细胞机制 执行条件再生并验证自动化显微镜平台以实现高通量 这些结果意义重大,因为它们将建立再生的重要驱动因素。 在中枢神经系统中,包括目前可以有效治疗的潜在治疗靶点 神经系统无法治愈的损伤和疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Hue-Kay Chung其他文献

Samuel Hue-Kay Chung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Hue-Kay Chung', 18)}}的其他基金

Novel wedge-based approach for simultaneous multichannel microscopy
用于同步多通道显微镜的基于楔的新颖方法
  • 批准号:
    8781277
  • 财政年份:
    2014
  • 资助金额:
    $ 49.45万
  • 项目类别:

相似国自然基金

新一代网络环境下对称密码算法的自动化分析与设计技术研究
  • 批准号:
    62032014
  • 批准年份:
    2020
  • 资助金额:
    297 万元
  • 项目类别:
    重点项目
基于自动化搜索与机器学习的分组密码算法分析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于组合机器学习算法的病理性近视眼底多模态影像资料自动化定量分析研究
  • 批准号:
    81970846
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
轻量级分组密码算法的设计和分析
  • 批准号:
    61902100
  • 批准年份:
    2019
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目
考虑资源约束的柔性自动化制造单元调度优化研究
  • 批准号:
    71901176
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
  • 批准号:
    10741596
  • 财政年份:
    2023
  • 资助金额:
    $ 49.45万
  • 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 49.45万
  • 项目类别:
i-AKC: Integrated AIRR Knowledge Commons
i-AKC:综合 AIRR 知识共享
  • 批准号:
    10712558
  • 财政年份:
    2023
  • 资助金额:
    $ 49.45万
  • 项目类别:
Correcting biases in deep learning models
纠正深度学习模型中的偏差
  • 批准号:
    10584314
  • 财政年份:
    2023
  • 资助金额:
    $ 49.45万
  • 项目类别:
Quantitative Normalization of Spatial Metabolomics for Molecular Signatures of Tissue Heterogeneity
组织异质性分子特征的空间代谢组学定量标准化
  • 批准号:
    10603667
  • 财政年份:
    2023
  • 资助金额:
    $ 49.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了