The Role of M1 Leg Area in Volitional and Stereotyped Control of the Lower Limb

M1 腿部区域在下肢意志和刻板控制中的作用

基本信息

  • 批准号:
    10624204
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-11-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

In the healthy nervous system, the development of intention and motor execution is a dynamic and highly distributed process that originates in the brain. The intended action is transmitted along the axonal super highway to smart circuits in the spinal cord that transform the descending command into coordinated patterns of muscle activation. While much is understood regarding the control strategies the brain uses to drive upper limb movements, relatively little is known about the central control of human locomotion. Further, failures of function in one seemingly insignificant processing loop in the brain or periphery can, and often does, lead to dramatic consequences that induce transient or permanent deficits in motor control. A particularly palpable example of this is the consequences resulting from spinal cord injury (SCI), which, in extreme cases, can render a person completely unable to interact with the world around them. Such nervous system injuries and disorders have long-term health, economic and social consequences in both the civilian and Veteran population. Despite the best available medical treatments, hundreds of thousands of individuals endure a long life post-SCI with sensorimotor deficits that dramatically affect their quality of life. The specific objective of this project is to build fundamental knowledge of how motor cortex (MI) controls voluntary, as well as stereotypic, lower limb movements, and then to design both a brain-spine interface leveraging a fully implanted hardware system, as well as a first of its kind end-point brain-machine interface for lower limb prosthetics. We will study the basic function of nonhuman primate motor cortices during a variety of hind limb movements, including passive walking on a treadmill, during obstacle avoidance, and direct endpoint control on a sitting flywheel while recording high-fidelity neural population data and kinematics. Finally, our results will be interpreted in the context of supporting a translational clinical study in humans to provide a new rehabilitation pathway for Veterans with spinal injury, as well as neuroprosthetic pathway for amputees. We will conclusively determine the strategies employed by nonhuman primate motor cortex to both drive and adjust hind limb placement during locomotion and we will determine if motor cortex activity consequently changes between so-called “automatic” movements (e.g. walking on a treadmill), and volitional, highly precise movements (e.g. end-point control on a flywheel). The proposed study will work with rhesus monkeys trained to walk on an instrumented treadmill, across a flat corridor, freely within a large naturalistic roaming space, as well as controlling the pedal location along a 2- dimensional flywheel. Animals will be implanted with a) two silicon microelectrode arrays in MI-leg, and premotor area (PMd) containing movement planning information; b) an implantable pulse generator connected to a custom epidural spinal cord stimulation microelectrode array; and c) electromyography sensors in key gait muscles of the lower limb. Animals will be evaluated across all locomotor contexts, as well as in their customized home-cage, using wireless data transmission. We will evaluate the long-term use of the BSI both to restore functional locomotion, and to support other daily nonhuman primate activities. Finally, we will leverage the knowledge gained about the motor cortex’s role in locomotion, as well as our previous development of a brain-spinal interface, to deploy a fully-implanted brain-spinal interface for human translation within the VA for application to veteran locomotor rehabilitation.
在健康的神经系统中,意图和运动执行的发展是动态的、高度的。 起源于大脑的分布式过程沿着轴突超传输。 通往脊髓智能电路的高速公路,将下行命令转化为协调模式 虽然人们对大脑用来驱动上肢的控制策略有很多了解。 肢体运动,对人类运动的中枢控制知之甚少。 大脑或外周中看似微不足道的处理循环中的功能可以而且经常会导致 导致短暂或永久性运动控制缺陷的严重后果。 脊髓损伤 (SCI) 造成的后果就是一个例子,在极端情况下, 使人完全无法与周围的世界互动。 疾病对平民和退伍军人都会产生长期的健康、经济和社会后果 尽管有最好的治疗方法,仍有数十万人忍受着漫长的痛苦。 脊髓损伤后的生活存在感觉运动缺陷,严重影响他们的生活质量。 该项目的具体目标是建立运动皮层 (MI) 如何控制的基础知识 自愿的以及刻板的下肢运动,然后设计脑-脊柱界面 利用完全植入的硬件系统以及首个同类端点脑机接口 我们将研究非人类灵长类动物运动皮质在各种情况下的基本功能。 后肢运动,包括在跑步机上被动行走、避障期间和直接终点 控制坐式飞轮,同时记录高保真神经群体数据和运动学。 结果将在支持人类转化临床研究的背景下进行解释,以提供新的方法 我们将为患有脊柱损伤的退伍军人提供康复途径,以及为截肢者提供神经修复途径。 最终确定非人类灵长类动物运动皮层驱动和调整所采用的策略 运动过程中后肢的放置,我们将确定运动皮层活动是否导致变化 介于所谓的“自动”运动(例如在跑步机上行走)和意志性、高度精确的运动之间 运动(例如飞轮上的终点控制)。 拟议的研究将与经过训练的恒河猴一起在仪器跑步机上行走,穿过平坦的地面 走廊,在一个大的自然主义漫游空间内自由,以及沿着 2-控制踏板位置 动物将被植入 a) MI 腿中的两个硅微电极阵列,以及 包含运动计划信息的运动前区 (PMd);b) 连接的植入式脉冲发生器; 定制硬膜外脊髓刺激微电极阵列;以及 c) 关键步态中的肌电图传感器 动物的下肢肌肉将在所有运动环境以及它们的运动环境中进行评估。 定制的家用笼,采用无线数据传输,我们将评估BSI两者的长期使用情况。 恢复功能性运动,并支持其他非人类灵长类动物的日常活动。 利用获得的关于运动皮层在运动中的作用的知识,以及我们之前的知识 开发脑-脊髓接口,部署完全植入的脑-脊髓接口用于人类翻译 在 VA 内应用于退伍军人运动康复。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Allenson Borton其他文献

David Allenson Borton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Allenson Borton', 18)}}的其他基金

Bridging bench to bedside with aneurotechnology cross-development platform
通过神经技术交叉开发平台将工作台与床边桥接起来
  • 批准号:
    10640424
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
  • 批准号:
    10630949
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Bioengineering a cortical microtissue model to study human microglia in Alzheimer's disease
生物工程皮质微组织模型来研究阿尔茨海默病中的人类小胶质细胞
  • 批准号:
    10448954
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
  • 批准号:
    10205394
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
  • 批准号:
    10470025
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
  • 批准号:
    10689290
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Accelerating Dissemination of Implantable Neurotechnology for Clinical Research
加速临床研究植入式神经技术的传播
  • 批准号:
    10238761
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Large Scale Cortical Laminar Recordings: Novel Instrumentation
大规模皮质层流记录:新颖的仪器
  • 批准号:
    10078368
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Spatiotemporal Coding in the Pain Circuit Along the Spine-brain Continuum
沿着脊柱-大脑连续体的疼痛回路的时空编码
  • 批准号:
    10305343
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
The Role of M1 Leg Area in Volitional and Stereotyped Control of the Lower Limb
M1 腿部区域在下肢意志和刻板控制中的作用
  • 批准号:
    10021472
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
  • 批准号:
    52361020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
  • 批准号:
    52309088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
  • 批准号:
    42376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
  • 批准号:
    10678789
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Home foot-temperature monitoring through smart mat technology to improve access, equity, and outcomes in high-risk patients with diabetes
通过智能垫技术进行家庭足部温度监测,以改善高危糖尿病患者的可及性、公平性和结果
  • 批准号:
    10539209
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
  • 批准号:
    10861531
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
  • 批准号:
    10730284
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
  • 批准号:
    10603253
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了