Improving quantitative accuracy and tissue visualization in CBCT guided radiation therapy

提高 CBCT 引导放射治疗的定量准确性和组织可视化

基本信息

  • 批准号:
    10623256
  • 负责人:
  • 金额:
    $ 12.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Even though cone beam computed tomography (CBCT) is the most commonly used volumetric image guidance modality, its role has been severely limited in the context of treatment monitoring and patient-specific treatment modifications in radiation therapy. Due to CBCT’s poor image quality, clinicians cannot clearly visualize soft tissues to assess anatomical changes, thus affecting their clinical decision-making. Moreover, tools for treatment monitoring, such as deformable registration and dose calculation, do not function robustly with today’s CBCT images due to the lack of CT number accuracy. Scattered radiation remains to be the fundamental problem in improving CBCT image quality. Thus, in this project, we propose the two-dimensional antiscatter grid (2D Grid) as a novel device to address the scatter problem and achieve high-quality CBCT images that are suitable for treatment monitoring. Our device has fundamentally different architecture and fabrication than existing antiscatter grids for CBCT. Due to its optimized grid structure, our 2D Grid provides both higher primary transmission and better scatter rejection performance than today’s state-of-the-art antiscatter grids. Due to its favorable primary transmission and scatter rejection performance, our 2D Grid improves the contrast-to-noise ratio and CT number accuracy to levels not achievable with existing antiscatter grids. We hypothesize that our 2D Grid will provide significantly better soft tissue visualization and CT number accuracy, and deformable registration algorithms are expected to perform significantly better. To test our hypotheses, we will develop and optimize data processing methods for 2D Grid implementation in CBCT (Aim 1). Subsequently, we will fabricate 2D Grid prototypes and evaluate their performance in clinical CBCT systems for photon and proton therapy (Aim 2). Following phantom based evaluations, we will conduct a prospective clinical trial to evaluate the clinical utility of improved image quality (Aim 3). We will perform observer studies to quantify the improvement in soft tissue visualization with respect to existing clinical CBCT and gold-standard Helical CT, assess the improvement in accuracy of deformable image registration algorithms, and evaluate the improvement in consistency of image intensity and texture features. While our application is focused on radiation therapy, the 2D Grid can play a key role in other CBCT applications, such as interventional radiology, extremity imaging, and intraoperative imaging. Due to its improved low-contrast visualization performance, our 2D Grid may also allow reduction of the imaging dose in CBCT.
项目摘要 甚至坚硬的锥束计算层析成像(CBCT)也是最常用的体积图像 指导方式,其作用在治疗监测和特定于患者的情况下受到了严格的限制 放射治疗中的治疗修饰。 可视化软组织以评估解剖学变化,从而深情他们的临床决策。 用于治疗监测的工具,例如可变形的注册和剂量计算,无法牢固发挥 由于缺乏CT数量的精度,因此由于今天的CBCT图像。 散射辐射仍然是改善CBCT图像质量的基本问题 这个项目,我们提出了二维抗议者网格(2D网格)作为解决散布的新设备 问题并实现适合治疗监测的高质量CBCT图像 与现有的CBCT的现有抗议室网格的结构和制造根本不同。 优化的网格结构,我们的2D网格既可以提供更高的一级传输和更好的散射排斥 性能比当今的最先进的Alsocater网格。 分散拒绝性能,我们的2D网格提高了对比度比率和CT数量的准确性 现有的抗探望者网格无法达到的水平。 我们假设我们的2D网格将提供更好的软组织可视化和CT数字 准确性和可变形的注册算法预计会表现出色 假设,我们将开发并优化CBCT中2D网格imentitation的数据处理方法(AIM 1)。 光子和质子治疗的系统(AIM 2)。 预期的临床试验评估了改善图像质量的临床实用性(AIM 3) 观察者的研究量化了相对于现有临床CBCT的软组织可视化的改善 和金色标准的螺旋CT,评估可变形图像注册的不体 算法,并评估合并强度和纹理特征的改进。 尽管我们的应用集中在放射治疗上,但2D网格可以在其他CBCT中发挥关键作用 应用,例如介入放射学,肢体成像和术中成像。 改进的低对比度可视化性能,我们的2D网格也可能会允许允许允许允许减少成像剂量 CBCT。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feasibility of dual-energy CBCT material decomposition in the human torso with 2D anti-scatter grids and grid-based scatter sampling.
利用二维抗散射网格和基于网格的散射采样对人体躯干进行双能 CBCT 材料分解的可行性。
  • DOI:
    10.1002/mp.16611
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Altunbas,Cem
  • 通讯作者:
    Altunbas,Cem
A quantitative CBCT pipeline based on 2D antiscatter grid and grid-based scatter sampling for image-guided radiation therapy.
基于 2D 抗散射网格和基于网格的散射采样的定量 CBCT 管道,用于图像引导放射治疗。
  • DOI:
    10.1002/mp.16681
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Bayat,Farhang;Ruan,Dan;Miften,Moyed;Altunbas,Cem
  • 通讯作者:
    Altunbas,Cem
Megavoltage cross-scatter rejection and correction using 2D antiscatter grids in kilovoltage CBCT imaging.
在千伏 CBCT 成像中使用 2D 抗散射网格进行兆伏交叉散射抑制和校正。
A unified scatter rejection and correction method for cone beam computed tomography.
  • DOI:
    10.1002/mp.14681
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Altunbas C;Park Y;Yu Z;Gopal A
  • 通讯作者:
    Gopal A
Evaluation of scatter rejection and correction performance of 2D antiscatter grids in cone beam computed tomography.
  • DOI:
    10.1002/mp.14756
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Park Y;Alexeev T;Miller B;Miften M;Altunbas C
  • 通讯作者:
    Altunbas C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cem Altunbas其他文献

Cem Altunbas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cem Altunbas', 18)}}的其他基金

A two-dimensional antiscatter grid for dental cone beam computed tomography
用于牙科锥形束计算机断层扫描的二维防散射网格
  • 批准号:
    10258749
  • 财政年份:
    2021
  • 资助金额:
    $ 12.39万
  • 项目类别:
Improving quantitative accuracy and tissue visualization in CBCT guided radiation therapy
提高 CBCT 引导放射治疗的定量准确性和组织可视化
  • 批准号:
    10264142
  • 财政年份:
    2020
  • 资助金额:
    $ 12.39万
  • 项目类别:
Improving quantitative accuracy and tissue visualization in CBCT guided radiation therapy
提高 CBCT 引导放射治疗的定量准确性和组织可视化
  • 批准号:
    10407071
  • 财政年份:
    2020
  • 资助金额:
    $ 12.39万
  • 项目类别:
A dedicated two dimensional antiscatter grid for CBCT in radiation therapy
放射治疗中 CBCT 专用二维防散射网格
  • 批准号:
    9298601
  • 财政年份:
    2016
  • 资助金额:
    $ 12.39万
  • 项目类别:

相似国自然基金

员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
  • 批准号:
    72302005
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 12.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了