Studying perceptual decision-making across cortex by combining population imaging, connectomics, and computational modeling
通过结合群体成像、连接组学和计算模型来研究跨皮层的感知决策
基本信息
- 批准号:10242172
- 负责人:
- 金额:$ 114.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnatomyBehavioralBipolar DisorderCalciumCellsCodeCommunitiesComplexComputer ModelsCouplingCuesDataData SetDecision MakingElectron MicroscopyEsthesiaImageKnowledgeMeasurementMeasuresMethodsModelingMusNeural Network SimulationNeuronsNeurophysiology - biologic functionOutputParietal LobePatternPerceptionPlayPopulationProcessRecurrenceResearch PersonnelResourcesRoleSamplingSchemeSchizophreniaSensoryShapesStimulusStructure-Activity RelationshipTestingTimeVisual CortexWorkassociation cortexautism spectrum disorderbasecomputer frameworkcomputerized toolsconnectome datanervous system disordernetwork modelsneural circuitneuropsychiatric disordernovelnovel strategiesreconstructionrecurrent neural networkrelating to nervous systemsensory cortexsensory stimulusskillsstudy populationsynergismtooltwo-photonvirtual realityvisual coding
项目摘要
Project Summary
During perceptual decision-making, populations of neurons, arranged in highly interconnected microcircuits,
work together to encode sensory stimuli and to transform sensory perception into appropriate behavioral choices.
A fundamental gap in our knowledge about perceptual decision-making is understanding how the connectivity in
cortical microcircuits shapes dynamics and information codes in populations of neurons. This gap has arisen
because anatomical connectivity and activity have generally been studied separately, and because a
computational framework to understand structure-function relationships in cortical microcircuits is missing. Here,
we will assemble a team of researchers with complementary skills to tackle this problem. We will combine
approaches to study population coding and dynamics using two-photon calcium imaging during a novel and
complex decision task for mice, with measurements of connectivity in the imaged neurons using electron
microscopy (EM)-based connectomics. Furthermore, we will use our activity and connectivity data to develop a
data-driven model to explore structure-function relationships across cortical microcircuits.
We will apply our new approach to investigate how population codes, microcircuit connectivity, and structure-
function relationships differ across cortex to perform distinct computational tasks during perceptual decision-
making. Although it is well established that sensory and association cortices perform different functions, little is
known about the mechanisms underlying these different roles, including distinctions in microcircuit connectivity
and population coding schemes. In a first aim, we will compare population codes and microcircuit connectivity
for sensory stimuli and behavioral choices in visual cortex (V1; sensory cortex) and posterior parietal cortex
(PPC; association cortex). We will use computational tools to examine how distinct coding schemes provide
functional benefits. We will use EM connectomics in V1 and PPC for neurons imaged during a perceptual
decision task to probe structure-function relationships for stimulus and choice codes. We will develop a data-
driven recurrent neural network model to relate connectivity and population activity. In a second aim, we will
investigate how neuronal populations transform sensory information into behavioral choices using microcircuit
connectivity. We will develop a new statistical concept – intersection information – to identify activity patterns in
V1 and PPC that carry sensory information that informs behavioral choices. Using EM connectomics, we will
reconstruct the microcircuit connectivity between cells to test hypotheses about sensory-to-choice information
flow. Our work will be some of the first to compare population coding and microcircuit connectivity across cortical
regions and to explore structure-function relationships for perceptual decision-making.
项目摘要
在感知决策过程中,在高度相互连接的微电路中排列的神经元的poptions,
共同努力以编码感觉刺激并将感觉易感转变为适当的选择。
我们关于感知决策的基本差距是了解联系
皮质微电路形状的神经元种群中的动态和信息代码。
因为解剖学连接和活动通常已经分别研究了,因为
缺少了解皮质微电路中结构 - 功能的计算框架。
我们将组建一个具有互补技能的研究人员,以解决这个问题
在小说和
小鼠的复杂决策任务,使用电子中成像神经元的连通性测量
基于显微镜(EM)的连接组。
数据驱动的模型,以探索跨皮质微核的结构 - 功能。
我们将采用新方法来研究人口代码,微电路连接和结构如何
在感知决策过程中,功能关系在皮质之间不同,以执行不同的计算任务 -
制作。
知道不同角色的基础机制,包括微电路连接中的区别
和POPTION编码方案。
用于视觉皮层(V1;感觉皮层)和后顶叶皮层中的感觉刺激和行为选择
(PPC;协会皮质)。
功能好处。
探测刺激和选择代码的结构功能的任务。
驱动的复发性神经网络模型以第二个目标关联连通性和人口活动。
研究神经元的Poptions如何使用微电路将感觉信息转化为行为选择
连接性。我们将开发一个新的统计概念 - 交集信息
V1和PPC携带感官信息,可为行为选择提供信息。
重建细胞之间的微电路连通性,以测试有关选择信息的假设
流程。
区域并探索用于感知决策的结构功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher D Harvey其他文献
Christopher D Harvey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher D Harvey', 18)}}的其他基金
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10249108 - 财政年份:2020
- 资助金额:
$ 114.36万 - 项目类别:
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10468896 - 财政年份:2020
- 资助金额:
$ 114.36万 - 项目类别:
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10011969 - 财政年份:2020
- 资助金额:
$ 114.36万 - 项目类别:
Toward mechanistic cognitive neuroscience: cell types, connectivity, and patterned perturbations
迈向机械认知神经科学:细胞类型、连接性和模式扰动
- 批准号:
10673164 - 财政年份:2020
- 资助金额:
$ 114.36万 - 项目类别:
Studying perceptual decision-making across cortex by combining population imaging, connectomics, and computational modeling
通过结合群体成像、连接组学和计算模型来研究跨皮层的感知决策
- 批准号:
10460526 - 财政年份:2018
- 资助金额:
$ 114.36万 - 项目类别:
Parietal cortex networks for sensorimotor processing during navigation
顶叶皮层网络用于导航过程中的感觉运动处理
- 批准号:
8960382 - 财政年份:2015
- 资助金额:
$ 114.36万 - 项目类别:
New approaches to understand neuronal microcircuit dynamics for working memory
理解工作记忆神经元微电路动力学的新方法
- 批准号:
8955230 - 财政年份:2015
- 资助金额:
$ 114.36万 - 项目类别:
Parietal cortex networks for sensorimotor processing during navigation
顶叶皮层网络用于导航过程中的感觉运动处理
- 批准号:
10395503 - 财政年份:2015
- 资助金额:
$ 114.36万 - 项目类别:
Parietal cortex networks for sensorimotor processing during navigation
顶叶皮层网络用于导航过程中的感觉运动处理
- 批准号:
9268449 - 财政年份:2015
- 资助金额:
$ 114.36万 - 项目类别:
Parietal Cortex Networks for Sensorimotor Processing During Navigation
导航过程中用于感觉运动处理的顶叶皮层网络
- 批准号:
10614424 - 财政年份:2015
- 资助金额:
$ 114.36万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 114.36万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 114.36万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 114.36万 - 项目类别:
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
- 批准号:
10555896 - 财政年份:2023
- 资助金额:
$ 114.36万 - 项目类别: