FAST IMAGING METHODS FOR HYPERPOLARIZED NUCLEI

超极化核的快速成像方法

基本信息

  • 批准号:
    8363924
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The overall goal of this project is to develop a robust set of instrumentation and methods that facilitate the translation of new discoveries into powerful tools for cancer research and clinical cancer care. The ultimate potential of hyperpolarized (HP) agents is fully realized when these agents are used to probe molecular interactions of cancer in vivo. Small animal models of cancer play a crucial role in the evaluation and validation of novel diagnostic agents and in the discovery and optimization of new approaches to cancer therapy. Unfortunately, the constraints inherent to detection of HP agents are unique and the limited availability of polarizing systems to date has restricted the development of imaging technologies and instrumentation that are optimized for that purpose. Lack of such infrastructure, in turn, slows the demonstration of new applications in vivo and tempers the rate at which new discoveries can progress to clinical care. Significant opportunities currently exist to address these needs and influence the development of imaging technologies and instrumentation for HP measurements in both experimental and clinical settings. Klaes Golman first demonstrated metabolic imaging using HP 13C-labeled pyruvate in rats using a 1H/13C dual-tuned volume coil and a standard chemical-shift imaging (CSI) sequence with centric k-space encoding. Kevin Brindle's group at the Cambridge Research Institute has shown an early indication of response to therapy in the kinetics of HP-[1-13C]-pyruvate when measured using a standard CSI sequence and a surface coil (which aided signal localization) that was tuned to 13C. Scientists at UCSF and GE have developed an efficient double spin-echo echo-planar spectroscopic imaging (EPSI) sequence for HP-13C measurements and have applied compressed sensing to accelerate acquisitions made using a home-made 1H/13C dual-tuned volume coil. Leupold et al. have employed an iterative Dixon-like reconstruction to minimize encoding in the spectral domain for steady-state imaging of proton and HP-13C-CSI using a quadrature 13C surface coil. None but the most basic (and least efficient) of these sequences are widely available to researchers that seek to employ HP-13C methods in vivo, and only one of these groups has utilized a commercially available coil rather than purpose-built detectors that are tailored for specific experimental conditions. Notably absent from all of these approaches is the use of multichannel 13C capabilities to further accelerate data acquisition by parallel encoding. Increases in sensitivity and signal localization using arrays could lead to substantial improvements in spatial and temporal resolution when measuring HP-13C in vivo. This project leverages the expertise of colleagues at The University of Texas M.D. Anderson Cancer Center in imaging physics, experimental MRI, systems engineering, and small animal imaging for the development of coils, sequences, and reconstruction algorithms that are tailored to the unique constraints imposed by measurements of hyperpolarized media. Coils and arrays that are optimized and tailored for specific measurements will improve sensitivity and support efficient image acquisition methods. Fast and efficient pulse sequences will gather the most information from the decaying signal pool and improve spatial and temporal resolution. Acceleration via parallel imaging will further preserve signal by enabling reconstruction from fewer signal excitations and phase-encoding repetitions. Thorough characterization of coils and sequences will yield a robust platform for HP-CSI and provide a direct conduit for HP-CSI in small animal models of cancer. These goals will be achieved through three specific aims: Aim 1: Coils and arrays for quantitative MRSI of hyperpolarized nuclei. This aim will ensure that science is not held hostage by lack of commercially available instrumentation. Coils that support proton and hyperpolarized nuclei will be optimized, characterized, and provided to partners in this Texas network. The capability of multinuclear arrays to further improve the quality and resolution of HP-CSI will be tested. Aim 2: Sequences for rapid and efficient encoding and reconstruction. Efficient signal encoding and rapid imaging sequences improve the spatial and temporal resolution at which measurements can be made from decaying signal. This aim will focus on two classes of experiments: one for HP-13C observe, and one for rapid 1H imaging following polarization transfer (13C to 1H) in HP glucose analogues. Parallel and constrained image reconstruction methods will be integrated into rapid HP-CSI and HP-MRI sequences and their potential for acceleration will be tested. Aim 3: Integration of hyperpolarized measurements into preclinical cancer research. Optimized single-channel and parallel imaging methods for hyperpolarized experiments will be integrated into ongoing research involving small animal models of cancer at MDACC and UTSW, with provisions to increase study size and evaluate the repeatability of these methods.
该子项目是利用资源的众多研究子项目之一 由 NIH/NCRR 资助的中心拨款提供。子项目的主要支持 并且子项目的主要研究者可能是由其他来源提供的, 包括其他 NIH 来源。 子项目可能列出的总成本 代表子项目使用的中心基础设施的估计数量, NCRR 赠款不直接向子项目或子项目工作人员提供资金。 该项目的总体目标是开发一套强大的仪器和方法,促进将新发现转化为癌症研究和临床癌症护理的强大工具。当超极化(HP)试剂用于探测体内癌症的分子相互作用时,这些试剂的最终潜力就得到了充分发挥。癌症小动物模型在新型诊断剂的评估和验证以及癌症治疗新方法的发现和优化中发挥着至关重要的作用。不幸的是,HP试剂检测固有的限制是独特的,并且迄今为止偏振系统的有限可用性限制了为此目的优化的成像技术和仪器的开发。缺乏此类基础设施反过来会减慢体内新应用的展示,并降低新发现进展到临床护理的速度。目前存在重大机会来满足这些需求并影响实验和临床环境中 HP 测量成像技术和仪器的发展。 Klaes Golman 首先使用 1H/13C 双调谐体积线圈和具有中心 k 空间编码的标准化学位移成像 (CSI) 序列,在大鼠中展示了 HP 13C 标记的丙酮酸的代谢成像。剑桥研究所的 Kevin Brindle 团队在使用标准 CSI 序列和经过调谐的表面线圈(有助于信号定位)进行测量时,显示了 HP-[1-13C]-丙酮酸动力学治疗反应的早期迹象。至13C。加州大学旧金山分校和 GE 的科学家开发了一种用于 HP-13C 测量的高效双自旋回波回波平面光谱成像 (EPSI) 序列,并应用压缩传感来加速使用自制 1H/13C 双调谐体积线圈进行的采集。洛波尔德等人。采用迭代 Dixon 式重建来最小化谱域中的编码,以使用正交 13C 表面线圈进行质子和 HP-13C-CSI 的稳态成像。这些序列中只有最基本(且效率最低)的序列可供寻求在体内应用 HP-13C 方法的研究人员广泛使用,并且这些组中只有一个使用了市售线圈,而不是定制的专用检测器对于特定的实验条件。值得注意的是,所有这些方法都没有使用多通道 13C 功能来通过并行编码进一步加速数据采集。在体内测量 HP-13C 时,使用阵列提高灵敏度和信号定位可能会导致空间和时间分辨率的显着提高。 该项目利用德克萨斯大学 M.D. 安德森癌症中心同事在成像物理学、实验 MRI、系统工程和小动物成像方面的专业知识,开发线圈、序列和重建算法,这些算法是根据癌症所施加的独特限制量身定制的。超极化介质的测量。针对特定测量进行优化和定制的线圈和阵列将提高灵敏度并支持高效的图像采集方法。快速高效的脉冲序列将从衰减信号池中收集最多信息,并提高空间和时间分辨率。通过并行成像的加速将通过更少的信号激励和相位编码重复进行重建来进一步保留信号。线圈和序列的全面表征将为 HP-CSI 提供一个强大的平台,并为小动物癌症模型中的 HP-CSI 提供直接渠道。这些目标将通过三个具体目标来实现: 目标 1:用于超极化核定量 MRSI 的线圈和阵列。这一目标将确保科学不会因缺乏商用仪器而受到束缚。支持质子和超极化核的线圈将被优化、表征并提供给该德克萨斯州网络中的合作伙伴。多核阵列进一步提高HP-CSI质量和分辨率的能力将受到测试。 目标 2:用于快速有效的编码和重建的序列。高效的信号编码和快速成像序列提高了空间和时间分辨率,可以根据衰减信号进行测量。这一目标将集中于两类实验:一类用于 HP-13C 观察,另一类用于 HP 葡萄糖类似物中偏振转移(13C 至 1H)后的快速 1H 成像。并行和约束图像重建方法将被集成到快速 HP-CSI 和 HP-MRI 序列中,并将测试它们的加速潜力。 目标 3:将超极化测量整合到临床前癌症研究中。用于超极化实验的优化单通道和并行成像方法将被整合到 MDACC 和 UTSW 正在进行的涉及小动物癌症模型的研究中,并提供扩大研究规模并评估这些方法的可重复性的规定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James A Bankson其他文献

James A Bankson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James A Bankson', 18)}}的其他基金

Hyperpolarized 129Xe MRI for imaging NK cell therapy of lung metastasis
超极化 129Xe MRI 用于肺转移的 NK 细胞治疗成像
  • 批准号:
    10646013
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
Leveraging Hyperpolarized MRI for Precision Oncology Approaches in Head and Neck Cancer
利用超极化 MRI 实现头颈癌的精准肿瘤学方法
  • 批准号:
    10530043
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
HDO Imaging is a Quantitative Marker of Cerebral Glucose Oxidation
HDO 成像是脑葡萄糖氧化的定量标志物
  • 批准号:
    10687186
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
Multi-Site Development & Evaluation of a Quantitative 3D Hyperpolarized C-13 MRI Clinical Prostate Cancer Exam
多站点开发
  • 批准号:
    10115625
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
FAST IMAGING METHODS FOR HYPERPOLARIZED NUCLEI
超极化核的快速成像方法
  • 批准号:
    8171675
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
Array Detectors for Accelerated Small Animal MRI
用于加速小动物 MRI 的阵列探测器
  • 批准号:
    6830546
  • 财政年份:
    2004
  • 资助金额:
    $ 0.8万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
  • 批准号:
    10736293
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
  • 批准号:
    10761578
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
Early detection and risk of head and neck cancer through immune based spatial omics
通过基于免疫的空间组学早期发现头颈癌并降低风险
  • 批准号:
    10766467
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
Accelerating Genomic Data Sharing and Collaborative Research with Privacy Protection
通过隐私保护加速基因组数据共享和协作研究
  • 批准号:
    10735407
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 0.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了