High fat diet-induced adrenergic dysfunction and resolution of adipose inflammation
高脂肪饮食引起的肾上腺素能功能障碍和脂肪炎症的解决
基本信息
- 批准号:10580596
- 负责人:
- 金额:$ 3.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAdipocytesAdipose tissueAdrenal GlandsAdrenergic AgentsAdrenergic ReceptorAnabolismAnimalsArachidonate 5-LipoxygenaseArterial Fatty StreakCD59 AntigenCatecholaminesCellsCessation of lifeChronicChronic DiseaseConsumptionCrownsDataDevelopmentDiabetes MellitusDiabetic mouseDietEnzymesExerciseFunctional disorderGlucoseGoalsHigh Fat DietImmuneImmunohistochemistryImmunosuppressionIndividualInfiltrationInflammationInflammatoryInflammatory ResponseInnate Immune ResponseInsulin ReceptorInsulin ResistanceInterruptionKnowledgeLTB4R geneLaboratoriesLearningLeukotriene B4LipoxinsMacrophageMacrophage ActivationMeasuresMediatingMetabolismMolecularMusNon-Insulin-Dependent Diabetes MellitusNutrientObesityPathway interactionsPhenotypePhysical activityPolyunsaturated Fatty AcidsProcessProductionProstaglandin-Endoperoxide SynthaseRNA InterferenceResearch PersonnelResistance developmentResolutionSignal PathwaySignal TransductionSortingStructureTechniquesTestingTherapeuticTissue ExpansionTissuesWeightWorkcardiorespiratory fitnesscytokinediet and exercisefeedingglucose uptakeimprovedinflammatory markerinsightinsulin sensitivitylipid mediatorlipidomicsmagnetic beadsobesity developmentphysical inactivityprematurepreventreceptor expressionresponsesedentaryskillssystemic inflammatory responsewound healing
项目摘要
Excess nutrient consumption promotes systemic and tissue-specific inflammatory responses, inhibiting insulin
receptor signaling pathways and prevents glucose uptake. Although specific molecular and cellular mechanisms
that lead to the development of insulin resistance remain unclear, chronic inflammation is central to obesity-
induced T2D. Diet-induced adipose tissue (AT) expansion with infiltration of classically activated macrophages
and production of pro-inflammatory cytokines perpetuates chronic inflammation and insulin resistance.
Therapeutic approaches that directly interrupt innate immune responses are problematic however as they could
lead to immunosuppression and thus have limited therapeutic applicability. We have shown that persistent
inflammation in diabetes and obesity is due to a deficiency in the processes that normally resolve inflammation.
Nonetheless, mechanisms by which obesity induces perturbations in pro-resolving pathways and promote the
development of unmitigated chronic inflammation remains undefined. Physical inactivity contributes to increased
adiposity, markers of inflammation, chronic disease, and premature death, while physical activity protects against
the development of obesity and chronic inflammation independent of reductions in weight. Cellular mechanisms
by which physical activity protects against chronic inflammation, however, remain largely unknown. Recent work
has shown that resolution of inflammation is mediated in part by enzymatic (15-,12-, 5-lipoxygenase, and
cyclooxygenases) conversion of polyunsaturated fatty acids into specialized proresolving lipid mediators (SPMs;
e.g., resolvins, lipoxins, maresins, and protectins) that act to quell inflammatory signaling. Importantly, our lab
and others have also shown that obese-diabetic mice treated with SPMs display elevated alternatively activated
macrophages with reduced AT inflammation, improved insulin sensitivity, and enhanced wound healing capacity.
Additionally, our lab has shown that high fat diet-induced insulin resistance develops due to elevated pro-
inflammatory lipid mediator leukotriene B4 (LTB4) production and that BLT-1 (LTB4 receptor) deficient mice are
protected against diet-induced insulin resistance— a paradigm that also persists in atherosclerotic lesions. These
findings suggest that imbalanced production of pro-inflammatory and proresolving lipid mediators contribute to
obesity-induced insulin resistance. Our preliminary data show that exercise increases AT SPM biosynthesis and
is inhibited by short duration high fat diet (HFD) feeding. We also find that HFD inhibits exercise-induced
alternatively activated adipose tissue macrophages (ATM) levels. Interestingly, adrenal gland expression of
biosynthetic enzymes and catecholamine levels—which our lab has previously shown to stimulate SPM
biosynthesis in macrophages—are reduced following HFD feeding. Thus, we hypothesize that HFD-induced
adrenergic dysfunction inhibits the proresolving response to exercise in AT. In pursuit of the scientific questions
herein, I will hone my basic laboratory skills, learn advanced techniques, develop professional skills and network,
all of which will propel me towards achieving my goal of becoming an independent investigator in academia.
过量的营养会促进全身和组织特异性炎症反应,抑制胰岛素消耗
受体信号通路并阻止葡萄糖摄取,尽管有特定的分子和细胞机制。
导致胰岛素抵抗发展的原因尚不清楚,慢性炎症是肥胖的核心-
饮食诱导的 T2D 脂肪组织 (AT) 扩张以及经典激活的巨噬细胞的浸润。
促炎细胞因子的产生使慢性炎症和胰岛素抵抗持续存在。
然而,直接中断先天免疫反应的治疗方法是有问题的,因为它们可能
导致免疫抑制,因此其治疗适用性有限。
糖尿病和肥胖症中的炎症是由于通常解决炎症的过程中的缺陷造成的。
然而,肥胖引起促解决途径扰动并促进
未缓解的慢性炎症的发展仍不清楚,缺乏身体活动会导致炎症增加。
肥胖、炎症、慢性疾病和过早死亡的标志,而体育活动可以预防
肥胖和慢性炎症的发展与体重减轻无关。
然而,身体活动如何预防慢性炎症,目前仍不清楚。
研究表明,炎症的消退部分是由酶(15-、12-、5-脂氧合酶和
环加氧酶)将多不饱和脂肪酸转化为专门的促溶解脂质介质(SPM;
例如,消解素、脂氧素、maresins 和保护素),它们可以平息炎症信号传导。
和其他人还表明,用 SPM 治疗的肥胖糖尿病小鼠显示出较高的替代激活
巨噬细胞具有减少 AT 炎症、提高胰岛素敏感性和增强伤口愈合能力的作用。
此外,我们的实验室已经表明,高脂肪饮食引起的胰岛素抵抗是由于促胰岛素升高而产生的。
炎症脂质介质白三烯 B4 (LTB4) 的产生以及 BLT-1(LTB4 受体)缺陷的小鼠
防止饮食引起的胰岛素抵抗——这种模式在动脉粥样硬化病变中也持续存在。
研究结果表明,促炎和促消退介质脂质的产生不平衡会导致
我们的初步数据表明,运动会增加 AT SPM 的生物合成和肥胖引起的胰岛素抵抗。
短期高脂肪饮食 (HFD) 喂养会抑制我们还发现 HFD 会抑制运动引起的。
替代激活的脂肪组织巨噬细胞(ATM)水平。
生物合成酶和儿茶酚胺水平——我们的实验室之前已证明它们可以刺激 SPM
HFD 喂养后巨噬细胞的生物合成减少,因此,我们研究了 HFD 诱导的情况。
肾上腺素能功能障碍抑制 AT 运动的促缓解反应。
在此,我将磨练我的基本实验室技能,学习先进技术,发展专业技能和人际网络,
所有这些都将推动我实现成为学术界独立调查员的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ernesto Hector Pena Calderin其他文献
Ernesto Hector Pena Calderin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Acvrl1调控脂肪组织巨噬细胞M1/M2极化改善肥胖的机制研究
- 批准号:82300973
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
巨噬细胞介导脂肪组织重构在塑化剂干扰系统能量代谢中的作用研究
- 批准号:82373625
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
巨噬细胞GP73-CXCL5调节脂肪组织适应性产热的机制研究
- 批准号:32300573
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MYO9B缺失调控脂肪组织巨噬细胞代谢重编程促进肥胖相关胰岛素抵抗的机制研究
- 批准号:82300948
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of Trem2-expressing macrophages in atherosclerosis
表达 Trem2 的巨噬细胞在动脉粥样硬化中的作用
- 批准号:
10464928 - 财政年份:2022
- 资助金额:
$ 3.46万 - 项目类别:
Mechanisms for the regulation of novel lipids in vivo
体内新型脂质的调节机制
- 批准号:
10378638 - 财政年份:2021
- 资助金额:
$ 3.46万 - 项目类别:
Mechanisms for the regulation of novel lipids in vivo
体内新型脂质的调节机制
- 批准号:
10186875 - 财政年份:2021
- 资助金额:
$ 3.46万 - 项目类别:
Mechanisms for the regulation of novel lipids in vivo
体内新型脂质的调节机制
- 批准号:
10614968 - 财政年份:2021
- 资助金额:
$ 3.46万 - 项目类别: