A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
基本信息
- 批准号:10612482
- 负责人:
- 金额:$ 19.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectApoptosisBehaviorBehavioralBehavioral SymptomsBiochemicalBioenergeticsBiological ProcessBiologyBrainBrain DiseasesBuffersCalciumCellsCellular StructuresCitric Acid CycleClinicalCognitionComplexDefectDevelopmentDifferentiation and GrowthDiseaseDrosophila genusElectron TransportEmotionsEnzymesEtiologyFMR1FaceFibroblastsFoundationsFragile X SyndromeFunctional disorderFutureGeneticGoalsHealthHealthcareHomeostasisHumanHyperphagiaImageInduced pluripotent stem cell derived neuronsInheritedIntellectual functioning disabilityInvestigationKnowledgeLinkMediatingMental disordersMessenger RNAMetabolicMetabolismMitochondriaModelingMolecularNeurobehavioral ManifestationsNeurodegenerative DisordersNeuronsObesityOrganellesOutputPathogenesisPathogenicityPathologicPatient CarePatientsPhysiologicalPositioning AttributeProcessProductionProtein DeficiencyProteinsRNARNA BindingRNA-Binding ProteinsRegulationRoleSeizuresSignal TransductionSiteSocial BehaviorStructureSymptomsSynapsesSynaptic TransmissionSynaptic plasticitySystemTestingTranslationsTreatment FailureVoltage-Dependent Anion Channelautism spectrum disorderbehavioral phenotypingdFMR1 geneeffective therapyflyin vivomRNA Translationmitochondrial dysfunctionneural circuitneurophysiologyneuropsychiatric disordernovelnovel therapeutic interventionpharmacologicprotein functionprotein protein interactiontreatment effecttreatment strategyuptake
项目摘要
Fragile X syndrome (FXS) is the most prevalent form of inherited intellectual disability and the primary genetic
cause of autism. FXS is caused by loss of expression of the Fmr1 gene encoding Fragile X Mental Retardation
Protein (FMRP), a protein with RNA-binding activity thought to act primarily as a translational regulator. In
addition to intellectual disability, FXS patients present behavioral and cognitive symptoms, irregular physical
features, and metabolic symptoms. The prevailing hypothesis of FXS pathogenesis posits FMRP as a
promiscuous RNA-binding protein targeting hundreds of brain RNAs, with altered translation of these mRNA
targets as the underlying cause of the synaptic and neural circuit defects and behavioral phenotypes seen in
FXS. However, the recent clinical failures of treatment strategies targeting some of the key translational
substrates of FMRP, and the current lack of effective treatment option for FXS, argue that investigations of new
biological function of FMPR and new pathogenic mechanisms of FXS are warranted.
Mitochondria are dynamic and complex organelles with essential roles in many aspects of biology, from
energy production and intermediary metabolism to intracellular signaling and apoptosis. These broad functions
position mitochondrion as a central player in human health. In neurons, mitochondria and synapses are intimately
linked. In addition to their central role in bioenergetics, mitochondria are also critically important for maintaining
cellular Ca2+ homeostasis. Ca2+ uptake by mitochondria helps buffer cytosolic Ca2+ transients arising from
neuronal activation, protecting against the detrimental effects of Ca2+ influx. The ER-mitochondria contact site
(ERMCS) are increasingly appreciated as key structures regulating mito-Ca2+ homeostasis, and there is an
emerging role of altered ERMCS and mito-Ca2+ in the pathogenesis of neurodegenerative diseases. Whether
ERMCS and its role in mito-Ca2+ homeostasis is affected in major neuropsychiatric diseases such as FXS is not
known. The goal of this proposal is to test the central hypothesis that FMRP acts physically at ERMCS to direct
Ca2+ signaling between organelles, and that defects in this process contribute to the etiology of FXS. To test this
hypothesis, we propose to achieve the following Specific Aims in this exploratory project: Aim 1. Examine defects
in ERMCS formation in the Drosophila dFmr1 model and FXS patient-derived models. Aim 2. Test the
physiological roles of ERMCS proteins that direct mito-Ca2+ homeostasis in mediating FMRP function. By
providing evidence for the involvement of ERMCS and mito-Ca2+ in mediating FMRP function at the organellar,
synaptic, and organismal levels, these studies will lay the foundation for future mechanistic studies on the
regulation and function of FMRP in normal synaptic and neuronal processes underlying brain function, cognition,
emotion, and social behavior. Results from this study promise to significantly advance our understanding of the
fundamental roles of mitochondria and Ca2+ signaling in FXS and various related mental disorders and offer
novel and rational strategies to deliver health care for patients suffering from these devastating mental illnesses.
脆性 X 综合征 (FXS) 是遗传性智力障碍最常见的形式,也是主要的遗传性疾病
自闭症的原因。 FXS 是由编码脆性 X 型智力迟钝的 Fmr1 基因表达缺失引起的
蛋白质 (FMRP),一种具有 RNA 结合活性的蛋白质,被认为主要充当翻译调节因子。在
除了智力障碍外,FXS 患者还表现出行为和认知症状、身体不规律
特征和代谢症状。 FXS 发病机制的流行假说认为 FMRP 是一种
混杂的 RNA 结合蛋白靶向数百个大脑 RNA,这些 mRNA 的翻译发生了改变
目标作为突触和神经回路缺陷以及行为表型的根本原因
FXS。然而,最近针对一些关键转化的治疗策略在临床上失败了。
FMRP 的底物以及目前缺乏有效的 FXS 治疗方案,认为新的研究
FMPR 的生物学功能和 FXS 的新致病机制是有根据的。
线粒体是动态且复杂的细胞器,在生物学的许多方面发挥着重要作用,从
能量产生和中间代谢到细胞内信号传导和细胞凋亡。这些广泛的功能
将线粒体定位为人类健康的核心角色。在神经元中,线粒体和突触密切相关
已链接。除了在生物能学中的核心作用外,线粒体对于维持
细胞 Ca2+ 稳态。线粒体对 Ca2+ 的吸收有助于缓冲由线粒体引起的胞质 Ca2+ 瞬变
神经元激活,防止 Ca2+ 流入的有害影响。 ER-线粒体接触位点
(ERMCS)作为调节线粒体钙稳态的关键结构越来越受到重视,并且有一个
改变的 EMCS 和 mito-Ca2+ 在神经退行性疾病发病机制中的新作用。无论
EMCS 及其在线粒体 Ca2+ 稳态中的作用在主要神经精神疾病(例如 FXS)中受到影响
已知。该提案的目标是测试中心假设,即 FMRP 在 EMCS 上物理作用以指导
细胞器之间的 Ca2+ 信号传导以及该过程中的缺陷导致了 FXS 的病因学。为了测试这个
假设,我们建议在这个探索性项目中实现以下具体目标: 目标 1. 检查缺陷
果蝇 dFmr1 模型和 FXS 患者衍生模型中的 EMCS 形成。目标 2. 测试
EMCS 蛋白在介导 FMRP 功能中指导线粒体 Ca2+ 稳态的生理作用。经过
为 EMCS 和 mito-Ca2+ 参与介导细胞器 FMRP 功能提供证据,
突触和有机体水平,这些研究将为未来的机制研究奠定基础
FMRP 在大脑功能、认知、正常突触和神经元过程中的调节和功能
情绪和社会行为。这项研究的结果有望显着增进我们对
线粒体和 Ca2+ 信号传导在 FXS 和各种相关精神障碍中的基本作用并提供
新颖而合理的策略为患有这些毁灭性精神疾病的患者提供医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingwei Lu其他文献
Bingwei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingwei Lu', 18)}}的其他基金
A Novel Role of Fragile-X Mental Retardation Protein in Mitochondrial Calcium Homeostasis
Fragile-X 智力迟钝蛋白在线粒体钙稳态中的新作用
- 批准号:
10452354 - 财政年份:2022
- 资助金额:
$ 19.68万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10301076 - 财政年份:2021
- 资助金额:
$ 19.68万 - 项目类别:
Interplay between amyloid precursor protein metabolism and ER-mitochondria contact
淀粉样蛋白前体蛋白代谢与内质网线粒体接触之间的相互作用
- 批准号:
10470218 - 财政年份:2021
- 资助金额:
$ 19.68万 - 项目类别:
Understanding SHRF, an RNA exosome-linked disease with multi-organ involvement
了解 SHRF,一种与 RNA 外泌体相关的多器官受累疾病
- 批准号:
10305689 - 财政年份:2020
- 资助金额:
$ 19.68万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10317296 - 财政年份:2020
- 资助金额:
$ 19.68万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10441283 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
9979767 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10657388 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
Mitochondrial inner membrane architecture in skeletal muscle pathophysiology
骨骼肌病理生理学中的线粒体内膜结构
- 批准号:
10208725 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
相似国自然基金
金属硫蛋白MT1介导癌-睾丸抗原CT23影响肝癌恶性生物学行为的研究
- 批准号:81760424
- 批准年份:2017
- 资助金额:34.0 万元
- 项目类别:地区科学基金项目
亚致死剂量吡虫啉对蜜蜂脑神经细胞凋亡影响研究
- 批准号:31402148
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
LASS2表达对人膀胱癌细胞EJ凋亡和生物学行为的影响及机制
- 批准号:81260374
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:地区科学基金项目
喜树碱对肺成纤维细胞生物学行为影响及分子机制的研究
- 批准号:30860352
- 批准年份:2008
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
IP6长期作用对人结肠癌细胞HT-29的生物行为的影响
- 批准号:30671767
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
Examining the role of immune activation in transposon-triggered sterility.
检查免疫激活在转座子触发的不育中的作用。
- 批准号:
10748032 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
The TGF-Beta/MUC4 Signaling Axis in Circulating Tumor Cells of Metastatic Breast Cancer
转移性乳腺癌循环肿瘤细胞中的 TGF-β/MUC4 信号轴
- 批准号:
10751169 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别:
The mechanics of host cell repopulation of engineered tissues
工程组织的宿主细胞再生机制
- 批准号:
10580269 - 财政年份:2023
- 资助金额:
$ 19.68万 - 项目类别: