IPMK function in chromatin
IPMK 在染色质中的功能
基本信息
- 批准号:10598523
- 负责人:
- 金额:$ 37.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAddressAstrocytesAstrocytomaBindingBinding ProteinsBiologicalBiological ModelsCategoriesCell LineCell modelCellsChromatinChronicComplementCuesDataDetectionDevelopmentElementsEnzyme RepressionEnzymesEtiologyEukaryotaEventExperimental ModelsFDA approvedFeedsFutureGene ExpressionGene Expression RegulationGenesGenetic EpistasisGenetic TranscriptionGenomic approachGenomicsHDAC1 geneHistone AcetylationHistone DeacetylaseHistonesHumanHydrophobicityIn VitroIndividualInositolInositol PhosphatesLipid BindingLipidsLocationMediatingModelingMusNuclearNuclear ReceptorsNucleosomesPaperPathway interactionsPharmaceutical PreparationsPhenotypePhospholipidsPhosphorylationPhosphotransferasesPhysiologicalPlantsProductionRegulationSecond Messenger SystemsSeriesSignal TransductionSignaling MoleculeSiteSlideTestingTranscriptTranscription Initiation SiteTranscription RepressorTranscriptional RegulationWorkYeastsanimal tissuechemical geneticsempowermentenzyme activitygene repressionin vitro activityinhibitorkinase inhibitormutantnovelpromoterrecruitresponsestructural biologytranscription factortumor microenvironmenttumor xenograftyeast genetics
项目摘要
Abstract:
For the past two decades, several labs including John York, Susan Wente, Steve Shears, Adolfo
Saiardi and Solomon Synder have tried to elucidate how higher-order inositol phosphate 2nd messenger
signaling molecules (inositols) regulate transcription, mainly examining single transcriptional units in yeast by
genetic complementation/epistasis analyses. These studies focused on the completely conserved and
ubiquitous inositol phosphate multikinase (IPMK, ipk2), as this kinase sits at the nexus of several pathways
required for production of all higher inositols. IPMK activity is clearly required to rescue yeast phenotypes and
transcripts from individual elements, but how inositols achieved this regulation was undescribed, as the
chromatin effectors of inositols were unknown. In 2003, Erin O'Shea showed the kinase activity of IPMK
regulates nucleosome sliding in yeast, Carl Wu and another group showed inositols regulate ATP-dependent
chromatin remodelers Ino80 and Swi/Snf in vitro. However, inositol regulation of ATP-remodelers has not been
built upon in any cellular studies since, despite availability of genomic approaches to examine open chromatin.
We discovered a completely different way IPMK could regulate transcription, by directly
phosphorylating a phospholipid while the lipid is bound in the hydrophobic cleft of a nuclear receptor. This
model threatened to explain why the chromatin targets of IPMK were difficult to identify - they might be lipid-
binding proteins, not inositol-binding proteins. This led us to attempt to identify other transcription factors
regulated similarly by IPMK using genomics, presented in this proposal. In our human cell models we see
IPMK is recruited to hundreds of transcriptional start sites, controlling transcript accumulation at those
promoters in a kinase-dependent manner. But to our great surprise, GSEA immediately suggested IPMK
primarily (but certainly not exclusively) regulates gene expression through histone deacetylases (HDACs).
HDACs are transcriptional repressors shown in a series of structural biology papers by John Schwabe's group
to require inositols, not lipids, for full activity in vitro. Indeed, histone acetylation increases upon IPMK loss,
occurring at specific subsets of transcriptional start sites that recruit IPMK. All these aspects of IPMK functions
in chromatin and at transcriptional start sites are novel.
This proposal more deeply interrogates the new chromatin functions of IPMK described in our
preliminary data, taking advantage of new chemical-genetics and other mutants of IPMK we have developed.
Aim 1 identifies which of the new chromatin events are mediated most directly by IPMK, so mechanism can be
studied. Aim 2 determines which IPMK-mediated chromatin events are shared between physiologically
relevant model systems. Aim 3 resolves the mechanism of IPMK gene regulation. This proposal addresses
long standing questions of how IPMK regulates gene expression while introducing a new chromatin-based 2nd
messenger signaling paradigm that controls histone marks and transcription.
抽象的:
在过去的二十年里,包括 John York、Susan Wente、Steve Shears、Adolfo 在内的多个实验室
Saiardi 和 Solomon Synder 试图阐明高阶肌醇磷酸盐第二信使的作用
信号分子(肌醇)调节转录,主要通过以下方式检查酵母中的单个转录单位:
遗传互补/上位分析。这些研究集中于完全保守和
普遍存在的肌醇磷酸多激酶(IPMK、ipk2),因为该激酶位于多个途径的连接处
生产所有高级肌醇所需的。 IPMK 活性显然是拯救酵母表型所必需的
单个元件的转录本,但肌醇如何实现这种调节尚未描述,因为
肌醇的染色质效应子尚不清楚。 2003年,Erin O'Shea展示了IPMK的激酶活性
调节酵母中的核小体滑动,Carl Wu 和另一组表明肌醇调节 ATP 依赖性
体外染色质重塑剂 Ino80 和 Swi/Snf。然而,肌醇对 ATP 重塑剂的调节尚未得到证实。
尽管可以使用基因组方法来检查开放染色质,但此后的任何细胞研究都建立在这一基础上。
我们发现了一种完全不同的 IPMK 调节转录的方式,通过直接
磷酸化磷脂,同时脂质结合在核受体的疏水裂口中。这
模型可能会解释为什么 IPMK 的染色质目标难以识别——它们可能是脂质——
结合蛋白,而不是肌醇结合蛋白。这导致我们尝试识别其他转录因子
本提案中提出的 IPMK 使用基因组学进行类似的监管。在我们的人体细胞模型中我们看到
IPMK 被招募到数百个转录起始位点,控制这些转录起始位点的积累
以激酶依赖性方式启动子。但令我们大吃一惊的是,GSEA 立即建议了 IPMK
主要(但肯定不是唯一)通过组蛋白脱乙酰酶 (HDAC) 调节基因表达。
John Schwabe 小组在一系列结构生物学论文中展示了 HDAC 是转录抑制因子
需要肌醇,而不是脂质,才能在体外发挥全部活性。事实上,IPMK 丢失后组蛋白乙酰化会增加,
发生在招募 IPMK 的转录起始位点的特定子集上。 IPMK 功能的所有这些方面
染色质和转录起始位点的变化是新颖的。
该提案更深入地探讨了我们的文章中描述的 IPMK 新染色质功能。
初步数据,利用新的化学遗传学和我们开发的 IPMK 的其他突变体。
目标 1 确定哪些新染色质事件最直接由 IPMK 介导,因此机制可以是
研究过。目标 2 确定生理学之间共享哪些 IPMK 介导的染色质事件
相关模型系统。目标3解决IPMK基因调控机制。该提案解决了
长期存在的问题是 IPMK 如何在引入新的基于染色质的第二个基因的同时调节基因表达
控制组蛋白标记和转录的信使信号范式。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SF-1 Induces Nuclear PIP2.
- DOI:10.3390/biom13101509
- 发表时间:2023-10-12
- 期刊:
- 影响因子:5.5
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raymond Daniel Blind其他文献
Raymond Daniel Blind的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raymond Daniel Blind', 18)}}的其他基金
Unconventional regulation of mTORC1 signaling by inositol phosphate: implications for nutrient-induced premature aging
磷酸肌醇对 mTORC1 信号传导的非常规调节:对营养诱导的过早衰老的影响
- 批准号:
10372324 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:
Unconventional regulation of mTORC1 signaling by inositol phosphate: implications for nutrient-induced premature aging
磷酸肌醇对 mTORC1 信号传导的非常规调节:对营养诱导的过早衰老的影响
- 批准号:
10772905 - 财政年份:2022
- 资助金额:
$ 37.4万 - 项目类别:
Cancer cell signaling through lipids complexed to proteins
通过脂质与蛋白质复合的癌细胞信号传导
- 批准号:
8543686 - 财政年份:2012
- 资助金额:
$ 37.4万 - 项目类别:
Cancer cell signaling through lipids complexed to proteins
通过脂质与蛋白质复合的癌细胞信号传导
- 批准号:
8708521 - 财政年份:2012
- 资助金额:
$ 37.4万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Epigenetic mechanisms of histone methyltransferase ASH1L in autism spectrum disorder
组蛋白甲基转移酶 ASH1L 在自闭症谱系障碍中的表观遗传机制
- 批准号:
10743048 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Epigenetic mechanisms of disrupted neurodevelopment in Menke-Hennekam syndrome
Menke-Hennekam 综合征神经发育障碍的表观遗传机制
- 批准号:
10816703 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
Mitochondrial transfer from astrocytes to glioblastoma cells drives tumor growth
线粒体从星形胶质细胞转移到胶质母细胞瘤细胞驱动肿瘤生长
- 批准号:
10579532 - 财政年份:2023
- 资助金额:
$ 37.4万 - 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
- 批准号:
10618865 - 财政年份:2020
- 资助金额:
$ 37.4万 - 项目类别: