Engineering induction and assembly of human kidney tissue
人体肾脏组织的工程诱导与组装
基本信息
- 批准号:10598587
- 负责人:
- 金额:$ 44.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAreaAutologousBiocompatible MaterialsBiologicalCell LineageCellsChronic Kidney FailureCoculture TechniquesComplexDataDevelopmentDialysis procedureDiseaseDonor personDrainage procedureDrug TargetingDuct (organ) structureEconomic BurdenEnd stage renal failureEngineeringEpitheliumEventFetal KidneyFiltrationFutureGoalsHumanImmunocompromised HostInvadedKidneyKidney DiseasesKnowledgeLiteratureLocationLungMammary glandMechanicsMesenchymalMesenchymeMorbidity - disease rateMorphogenesisMusNephronsOrganOrgan TransplantationOrganoidsOutcomePathologyPatientsPatternPopulationPositioning AttributePrevalenceProcessProstatePublic HealthQuality of lifeRegenerative MedicineRenal TissueResearchSiteSolidSpecific qualifier valueStructureSurfaceSystemTechnologyTissue ModelTissuesTransplantationUnited States National Institutes of HealthUrineWNT Signaling PathwayWorkbiophysical propertiesbioprintingbody systemcell assemblycell communitydisabilityhuman pluripotent stem cellhuman tissueinnovationmodel buildingnephrogenesisnovel strategiesoptogeneticsprogramsregenerative tissuescreeningspatiotemporalstem cellsurinary
项目摘要
PROJECT SUMMARY
The goal of this proposal is to study and control nephron induction and assembly towards the formation
of replacement renal tissue. Kidney organoids re-create an astonishing cellular diversity comparable to the
early fetal kidney. However, structural connectivity of urine-producing nephrons and their drainage network
formed by ureteric epithelium (UE) is required to avoid rapid pathology, yet has not been achieved. Accordingly,
there is an urgent need to achieve connectivity between nephrons and ureteric epithelium before kidney
organoids can achieve their potential in regenerative medicine. Our long-term goal is to construct ‘higher-order’
synthetic kidney tissues using human autologous stem cell lineages and assembly technologies that mimic the
outcomes of morphogenesis. Our overall objectives at this stage are firstly to gain spatial control over nephron
formation by determining how the mechanical microenvironment contributes to their induction sites and
maturation. Its second objective is to direct nephron fusion with UE at many spatial sites through a controlled
invasive process. Achieving these objectives will mark a transformative advance towards creating replacement
kidney tissue. Our central hypothesis is that mechanical compaction of mesenchymal cells during kidney
morphogenesis permits nephron induction, and subsequently that tight spatiotemporal control over WNT
signaling events is necessary for their efficient fusion with UE. We plan to achieve the objectives through two
specific aims. Firstly, we will determine the mechanical basis of nephrogenesis and use it to specify
nephron positions. We will study mechanical compaction of the nephrogenic mesenchyme, assess biophysical
properties of early nephron cells, and optimize nephrogenesis at specific locations using micropatterning
technology. Secondly, we will program WNT-induced fusion of nephrons with ureteric epithelium. We will
optimize fusion in nephron-ureteric epithelial co-cultures using optogenetic control over WNT signaling, and then
trigger nephron assembly with UE spheroids after transferring them from micropatterned surfaces. The proposed
research is innovative because we create fundamental knowledge while creating tissues that are biomaterial-
free, human-derived (compatible with patient-derived autologous cell strategies), and therefore open to future
development for transplantation. The proposed research is significant because higher-order assembly of human
kidney tissue will create a step-change in renal replacement technology beyond dialysis, transplant, and “abiotic”
filtration. We expect these efforts to have significant positive impact in the areas of fundamental biological
discovery, drug target screening, and regenerative medicine.
项目概要
该提案的目标是研究和控制肾单位的诱导和组装以形成
肾脏替代组织重建了令人惊讶的细胞多样性,可与肾脏替代组织相媲美。
然而,早期胎儿肾脏的产尿肾单位及其排水网络的结构连通性。
需要由输尿管上皮(UE)形成以避免快速病理学,但尚未实现。
迫切需要在肾脏之前实现肾单位和输尿管上皮之间的连接
类器官可以在再生医学中发挥其潜力,我们的长期目标是构建“更高阶”。
使用人类自体干细胞谱系和模仿的组装技术合成肾组织
我们现阶段的总体目标首先是获得对肾单位的空间控制。
通过确定机械微环境如何影响其诱导位点和
其第二个目标是通过受控的方式在许多空间位置引导肾单位与 UE 融合。
实现这些目标将标志着创造替代品的变革性进展。
我们的中心假设是肾脏过程中间充质细胞的机械压缩。
形态发生允许肾单位诱导,以及随后对 WNT 的严格时空控制
信令事件对于它们与UE的有效融合是必要的,我们计划通过两个来实现目标。
首先,我们将确定肾发生的力学基础并用它来指定。
我们将研究肾源性间充质的机械压实,评估生物物理。
早期肾单位细胞的特性,并使用微图案优化特定位置的肾发生
其次,我们将编程WNT诱导的肾单位与输尿管上皮的融合。
使用对 WNT 信号的光遗传学控制优化肾单位-输尿管上皮共培养物中的融合,然后
从微图案表面转移后触发肾单位与 UE 球体的组装。
研究具有创新性,因为我们在创造生物材料组织的同时创造了基础知识——
免费、源自人类(与源自患者的自体细胞策略兼容),因此面向未来
所提出的研究具有重要意义,因为人类的高阶组装。
肾组织将为肾脏替代技术带来超越透析、移植和“非生物”的重大变革
我们预计这些努力将在基础生物领域产生重大积极影响。
发现、药物靶点筛选和再生医学。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Hughes其他文献
Alex Hughes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Hughes', 18)}}的其他基金
Engineering induction and assembly of human kidney tissue
人体肾脏组织的工程诱导与组装
- 批准号:
10419434 - 财政年份:2022
- 资助金额:
$ 44.39万 - 项目类别:
A developmental engineering toolbox for large-scale tissue engineering
用于大规模组织工程的发育工程工具箱
- 批准号:
10703388 - 财政年份:2019
- 资助金额:
$ 44.39万 - 项目类别:
A developmental engineering toolbox for large-scale tissue engineering
用于大规模组织工程的发育工程工具箱
- 批准号:
10456084 - 财政年份:2019
- 资助金额:
$ 44.39万 - 项目类别:
A developmental engineering toolbox for large-scale tissue engineering
用于大规模组织工程的发育工程工具箱
- 批准号:
9795761 - 财政年份:2019
- 资助金额:
$ 44.39万 - 项目类别:
A developmental engineering toolbox for large-scale tissue engineering
用于大规模组织工程的发育工程工具箱
- 批准号:
10222724 - 财政年份:2019
- 资助金额:
$ 44.39万 - 项目类别:
相似国自然基金
秦岭生态效益转化与区域绿色发展模式
- 批准号:72349001
- 批准年份:2023
- 资助金额:200 万元
- 项目类别:专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
通过自主研发的AAV8-TBG-LOX-1基因治疗技术祛除支架区域氧化型低密度脂蛋白抑制支架内新生动脉粥样硬化研究
- 批准号:82370348
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
PKR sensing of mitochondrial dsRNA in childhood Sjogrens disease
儿童干燥病线粒体 dsRNA 的 PKR 传感
- 批准号:
10637496 - 财政年份:2023
- 资助金额:
$ 44.39万 - 项目类别:
Specialized Proresolving Lipid Mediator-Enhanced Stem Cell Therapy and Tissue Regeneration
专门的溶解脂质介质增强干细胞治疗和组织再生
- 批准号:
10659020 - 财政年份:2022
- 资助金额:
$ 44.39万 - 项目类别:
Phase I clinical trial of adoptive transfer of autologous folate receptor-alpha redirected CAR T cells for ovarian cancer
自体叶酸受体-α重定向CAR T细胞过继转移治疗卵巢癌的I期临床试验
- 批准号:
10576370 - 财政年份:2022
- 资助金额:
$ 44.39万 - 项目类别: