Circuit dynamics underlying perceptual learning in the functionally organized visual cortex
功能组织的视觉皮层感知学习的回路动力学
基本信息
- 批准号:10599145
- 负责人:
- 金额:$ 7.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAddressAdultArchitectureAttentionAwardBehavioralBrainCalciumChronicDataDendritic SpinesDevelopmentDiscriminationDiscrimination LearningElementsEndowmentEnhancersExhibitsFloridaFoundationsFunctional ImagingFutureGeneticHeadImageImaging TechniquesIndividualInjuryLearningLearning DisabilitiesMammalsMapsModelingMolecularMonitorNatureNeuronsNeurosciencesOpticsPerceptionPerceptual learningPerformancePhasePopulationPositioning AttributePrimatesProcessPropertyPsychological reinforcementRecoveryResearchRewardsSensoryShapesSignal TransductionSpecificityStimulusStrokeStructureSynapsesSynaptic plasticityTask PerformancesTechnical ExpertiseTechniquesTechnologyTrainingTupaiaTupaiidaeV1 neuronVisualVisual Cortexarea V1area striatacholinergiccollaborative environmentexcitatory neuronexperienceexperimental studyflexibilityin vivo calcium imagingindividual responseinhibitory neuroninnovationlearning progressionneuralneural circuitnovelnovel strategiesorientation selectivityprogramsrecruitresponsesensorsensory cortexskillsspatiotemporaltraining opportunitytwo-photonvisual stimulus
项目摘要
Project Summary
Experience shapes cortical sensory representations in a remarkable manner during development, but after
maturation capacity for plasticity becomes limited. The tightly regulated plasticity of the mature cortex enables
learning but impedes the brain’s capacity to regain appropriate function after injury, stroke or prolonged sensory
loss. Studying mechanisms that underlie perceptual learning in the adult stage will advance our understanding
of perception and will provide the foundation to develop novel approaches that promote plasticity in the adult
brain. Recent studies in the tree shrew (tupaia belangeri), a highly visual mammal that shares cortical
organization features with primates, show that learning a reward-based orientation discrimination task leads to
long lasting changes in excitatory responses that increase discriminability between task relevant stimuli in the
mature primary visual cortex (V1). However, we lack a clear understanding of the underlying circuit mechanisms
that are responsible for these changes. I will combine my previous experience studying mechanisms of synaptic
plasticity with new training focused on expanding my technical expertise in cutting edge optical approaches to
uncover the mechanisms underlying perceptual learning in the tree shrew. Preliminary data suggest that a
transient and feature specific decrease in the inhibitory network response precedes changes in the excitatory
neuronal population associated with enhanced performance, showing that the learning process in tree shrew V1
layer 2/3 is a precise one where circuit elements are engaged with both feature and temporal specificity. I will
employ chronic 2-photon imaging in combination with novel genetic enhancers and precise RNAscope
technology to determine changes in the response properties of V1 inhibitory neural subpopulations during
perceptual learning (Aim 1). Additionally, I will define changes in the functional synaptic architecture of excitatory
neurons that undergo learning-related changes (Aim 2) by applying calcium imaging of dendritic spines through
the learning process. Finally, I will establish the spatiotemporal recruitment of acetylcholine release during
discrimination learning (Aim 3) by taking advantage of a recently developed cholinergic sensor that can be
imaged chronically through learning stages. This project capitalizes on the functional organization of the tree
shrew V1 area as a unique model to address how perceptual learning is implemented in highly structured cortical
networks akin to those found in the primate cortex. The studies will take place in a collaborative environment at
Max Planck Florida Institute for Neuroscience (MPFI) known for developing innovative approaches to address
fundamental questions about neural circuits and hosting one of the few tree shrew colonies in the world.
Completion of these aims and training plan will lead to a comprehensive framework describing the progression
of learning-related plasticity in a functionally structured cortex upon which I will build an independent research
program in the future.
项目概要
经验在发育过程中以显着的方式塑造皮质感觉表征,但在发育之后
成熟的可塑性能力变得有限。成熟皮质的可塑性受到严格调节。
学习,但会阻碍大脑在受伤、中风或长时间感觉后恢复适当功能的能力
研究成人阶段感知学习的机制将增进我们的理解。
感知并将为开发促进成人可塑性的新方法奠定基础
最近对树鼩(tupaia belangeri)的研究,树鼩是一种共享皮质的高度视觉哺乳动物。
灵长类动物的组织特征表明,学习基于奖励的方向辨别任务会导致
兴奋反应的长期持续变化,增加了任务相关刺激之间的辨别力
然而,我们对潜在的电路机制缺乏清晰的了解。
我将结合我之前研究突触机制的经验。
新培训的可塑性侧重于扩展我在尖端光学方法方面的技术专业知识
揭示树鼩知觉学习的机制 初步数据表明
抑制网络反应的短暂和特征特异性下降先于兴奋性网络反应的变化
与增强表现相关的神经群体,表明树鼩 V1 的学习过程
第 2/3 层是一个精确的层,其中电路元件同时具有特征和时间特异性。
采用慢性 2 光子成像与新型遗传增强剂和精确的 RNAscope 相结合
确定 V1 抑制性神经亚群反应特性变化的技术
此外,我将定义兴奋性突触结构的变化。
通过应用树突棘钙成像,神经元经历与学习相关的变化(目标 2)
最后,我将建立学习过程中乙酰胆碱释放的时空招募。
利用最近开发的胆碱能传感器进行辨别学习(目标 3)
通过学习阶段长期成像该项目利用了树的功能组织。
Shrew V1 区域作为一个独特的模型来解决如何在高度结构化的皮质中实施感知学习
类似于灵长类动物皮层中发现的网络,这些研究将在协作环境中进行。
马克斯·普朗克佛罗里达神经科学研究所 (MPFI) 以开发创新方法来解决问题而闻名
关于神经回路和世界上为数不多的树鼩群落之一的基本问题。
完成这些目标和培训计划将产生一个描述进展的综合框架
功能结构皮层中与学习相关的可塑性,我将在此基础上开展一项独立研究
未来的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela del Mar Rodriguez其他文献
Gabriela del Mar Rodriguez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela del Mar Rodriguez', 18)}}的其他基金
Circuit dynamics underlying perceptual learning in the functionally organized visual cortex
功能组织的视觉皮层感知学习的回路动力学
- 批准号:
10464735 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Human-iPSC derived neuromuscular junctions as a model for neuromuscular diseases.
人 iPSC 衍生的神经肌肉接头作为神经肌肉疾病的模型。
- 批准号:
10727888 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
The effect of aging on neurotransmitters and motor performance in a primate model
衰老对灵长类动物模型中神经递质和运动表现的影响
- 批准号:
10573386 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Genetic and molecular mechanisms of Xbp-1 mediated salivary gland development and differentiation
Xbp-1介导唾液腺发育和分化的遗传和分子机制
- 批准号:
10678146 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
The impact of a neonicotinoid pesticide on neural functions underlying learning and memory
新烟碱类农药对学习和记忆神经功能的影响
- 批准号:
10646631 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
An Enzyme-Based Antidote for Acute Nicotine Toxicity
一种基于酶的急性尼古丁中毒解毒剂
- 批准号:
10790758 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别: