Federated learning methods for heterogeneous and distributed Medicaid data

异构分布式医疗补助数据的联邦学习方法

基本信息

  • 批准号:
    10590354
  • 负责人:
  • 金额:
    $ 18.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary The broad objective of this project is to develop federated learning approaches that can efficiently reduce uncertainty and improve generalizability when assessing treatment effects based on multiple data sources. The proposal is motivated by a study of the Medicaid Outcome Distributed Research Network (MODRN) of eleven states in assessing the quality and access of medications for opioid use disorder (OUD). The collection of Medicaid claims data accounts for 40% of the OUD population in the US and covers a wide array of treatment choices, making it an ideal data source for understanding subgroup-specific treatment effects and developing precision health strategies. We leverage this large-scale distributed research network (DRN) to investigate the heterogeneous treatment effect (HTE) of buprenorphine, an opioid-based medication, on overdose mortality. However, the extra source of heterogeneity across states due to variation in state policy environments, which is largely unobserved, has presented great challenge in the assessment of HTE. Existing approaches such as meta-analysis are inadequate and underpowered to address the translational research needs in understanding the complex interactions among treatments, clinical characteristics and social determinant of health, especially, under the heavy influence of unexplainable heterogeneity across states. A suite of novel approaches will be developed to address a wide range of analytical requests that support data-driven precision health research under the framework of federated learning, where states collaboratively build analytical models under the orchestration of a coordinating state without pooling individual-participant data. With a central goal of modeling for different levels of heterogeneity in DRNs, this project focuses on the following aims: 1. To develop and evaluate a high-precision HTE estimator for buprenorphine for Pennsylvania by incorporating modeling information from ten other states; 2. To develop and evaluate a generalizable treatment recommendation system that protects vulnerable populations and is robust to policy variation across states. The methods will be rigorously tested and delivered as user friendly statistical software. The proposed methods extend well beyond MODRN and easily find applications in other common DRNs, such as hospital data networks and mobile data networks.
项目概要 该项目的总体目标是开发联邦学习方法,可以有效地减少 基于多个数据源评估治疗效果时的不确定性并提高普遍性。这 该提案的动机是对医疗补助结果分布式研究网络 (MODRN) 的 11 名成员进行的一项研究 各州评估阿片类药物使用障碍 (OUD) 药物的质量和可及性。的集合 医疗补助索赔数据占美国 OUD 人口的 40%,涵盖多种治疗 选择,使其成为了解亚组特定治疗效果和开发的理想数据源 精准健康策略。我们利用这个大规模分布式研究网络(DRN)来调查 丁丙诺啡(一种阿片类药物)对过量死亡率的异质治疗效果(HTE)。 然而,由于国家政策环境的差异,各州之间存在额外的异质性, 很大程度上未被观察到,这对 HTE 的评估提出了巨大的挑战。现有的方法例如 荟萃分析不足以满足理解方面的转化研究需求 治疗、临床特征和健康社会决定因素之间复杂的相互作用,特别是 受到各国之间无法解释的异质性的严重影响。一系列新颖的方法将 旨在满足支持数据驱动的精准健康研究的广泛分析要求 在联邦学习的框架下,各国协作构建分析模型 在不汇集个体参与者数据的情况下编排协调状态。以建模为中心目标 针对 DRN 中不同程度的异质性,该项目重点关注以下目标: 1. 开发和 通过结合建模来评估宾夕法尼亚州丁丙诺啡的高精度 HTE 估算器 来自其他十个州的信息; 2. 制定和评估通用的治疗建议 保护弱势群体并对各州政策变化具有鲁棒性的系统。方法将是 经过严格测试并作为用户友好的统计软件提供。所提出的方法远远超出了 MODRN 并轻松找到其他常见 DRN 中的应用,例如医院数据网络和移动数据 网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Tang其他文献

Lu Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

反向定制情境下制造商和平台企业间大数据共享对创新影响及治理机制研究
  • 批准号:
    72302182
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于杂交育种协同进化蚁群算法的工业大数据特征选择研究
  • 批准号:
    62376089
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交大数据驱动的社会网络群决策理论方法及应用研究
  • 批准号:
    72371077
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
数字技术应用对发明人员研发行为的影响——基于专利发明人的大数据分析
  • 批准号:
    72372152
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
大数据环境中的后量子高效函数加密的研究和应用
  • 批准号:
    62302272
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Longitudinal neural fingerprinting of opioid-use trajectories
阿片类药物使用轨迹的纵向神经指纹图谱
  • 批准号:
    10805031
  • 财政年份:
    2023
  • 资助金额:
    $ 18.93万
  • 项目类别:
Single cell multi-omics of iPSC-derived brain organoids from patients with opioid use disorder: synthetic opioids as molecular probes
来自阿片类药物使用障碍患者的 iPSC 衍生脑类器官的单细胞多组学:合成阿片类药物作为分子探针
  • 批准号:
    10629937
  • 财政年份:
    2023
  • 资助金额:
    $ 18.93万
  • 项目类别:
Data to Clinical Action: Using Predictive Analytics to Improve Care of Veterans with Opioid Use Disorder
数据到临床行动:使用预测分析来改善对患有阿片类药物使用障碍的退伍军人的护理
  • 批准号:
    10317224
  • 财政年份:
    2022
  • 资助金额:
    $ 18.93万
  • 项目类别:
Quantification and Characterization of Opioid Prescription, Overdose, and Fatalities in People with Cancer: A Massive Nationwide, Multi-Cohort Study
癌症患者阿片类药物处方、用药过量和死亡的量化和表征:一项大规模的全国性多队列研究
  • 批准号:
    10195671
  • 财政年份:
    2021
  • 资助金额:
    $ 18.93万
  • 项目类别:
Quantification and Characterization of Opioid Prescription, Overdose, and Fatalities in People with Cancer: A Massive Nationwide, Multi-Cohort Study
癌症患者阿片类药物处方、用药过量和死亡的量化和表征:一项大规模的全国性多队列研究
  • 批准号:
    10372162
  • 财政年份:
    2021
  • 资助金额:
    $ 18.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了