Optimizing ultraflexible electrodes and integrated electronics for high-resolution, large-scale intraspinal recording and modulation
优化超柔性电极和集成电子器件以实现高分辨率、大规模椎管内记录和调制
基本信息
- 批准号:10617092
- 负责人:
- 金额:$ 163.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ExperimentationAnimal ModelAnimalsAreaBehaviorBilateralBrainBrain regionCellsCharacteristicsChronicCicatrixCommunitiesComputer softwareComputersDataDestinationsDevelopmentDevicesDiameterDiseaseElectrodesElectronicsElectrophysiology (science)EsthesiaEtiologyFutureGeneticIndividualLaboratoriesLocomotionMeasuresMechanicsMediatingMissionMonitorMotor Neuron DiseaseMovementMovement DisordersMusNervous SystemNeurologicNeuronsNeurosciencesNoiseOperative Surgical ProceduresPopulationPositioning AttributeProtocols documentationPublic HealthRattusReflex actionResearchResolutionRiceRodentScientistSensorySiteSortingSpeedSpinalSpinal CordSpinal InjuriesSpinal cord injuryStrokeStructureSystemTechniquesTechnologyTestingTissuesUnited States National Institutes of HealthUrinationVertebral columnWeightWithdrawalWorkawakebrain tissuecell typedata streamsdensitydesigndigitaldisorder preventionflexibilitygraspimplantationimprovedin vivolight weightmeterminiaturizenanoelectronicsneuralneural circuitneuromechanismnew technologypilot testresponsescale upsuccesstool
项目摘要
Electrophysiology is a critical technology in neuroscience as a direct measure of neuronal functions. It has become routine for scientists to record and stimulate neuron populations in different brain regions in awake behaving animals, correlating activity with behavior. However, it has been insurmountable for the same electrophysiology to perform well in the spinal cord of behaving animals. For this reason, while the spinal cord is a critical site for locomotion and sensations, it remains largely a “black box” from a functional perspective, due to the lack of tools to measure and modulate spinal neurons while they are functioning. The main difficulty of doing electrophysiology in the spinal cord of behaving animals is because the cord is extremely mobile, moving and bending during behavior. Almost all existing neural electrodes, being mechanically more rigid than spinal tissues, fail to follow such movements, therefore yielding excessive noise and position drifts and lead to spinal injury or scaring in the long term. Here, we propose a suite of technologies centering around ultraflexible electrodes to address this challenge for the community. We now have preliminary data proving these probes achieved high quality single unit recording from spinal neurons of behaving mice. Markedly, when the animals are actively moving in diverse behaviors, we were still able to stably track neuron populations through spike sorting. Our preliminary long-term results also verified chronic in vivo recording for over 5 months after implantation in the spinal cord. Motivated by this success, we propose research plans to optimize this technology for spinal cord studies. Critically, we have brought together a group of outstanding neuroscientists to work with us in developing surgical approaches, and testing devices across different spinal areas, animal models, and research topics. These efforts are organized into three aims. We expect this new technology will enable new perspectives on the function of individual spinal cells in the context of a wide spectrum of behaviors that the spinal cord mediates (different speeds of locomotion, stopping, reflex withdrawal, reaching, grasping, urination, etc.). This will allow neuroscientists to connect the well-developed genetic and developmental characterization of spinal cell types to the circuit; to understand how other parts of the nervous system interact with the spinal cord. From a translational perspective, this offers the opportunity for a better understanding of the etiology and progression of spinal cord injury and disease by chronic monitoring; opens up the potential for intra-spinal interfaces that treat spinal cord injury, stroke, movement disorders, and motor neuron diseases.
电生理学是神经科学的关键技术,是神经元功能的直接衡量。科学家在清醒的动物中记录和刺激不同大脑区域的神经元种群已经成为常规,将活动与行为相关联。但是,相同的电生理学在行为动物的脊髓中表现良好,这是无法克服的。因此,尽管脊髓是运动和感觉的关键部位,但由于缺乏在功能上测量和调节脊柱神经元的工具,因此从功能上的角度来看,它在很大程度上仍然是一个“黑匣子”。在行为动物的脊髓中进行电生理学的主要困难是因为绳索在行为过程中非常流动,移动和弯曲。几乎所有现有的神经元在机械上比脊柱组织更刚性,都无法跟踪此类运动,因此产生了过度的噪声和位置训练,并长期导致脊柱损伤或恐惧。在这里,我们提出了一套围绕超级电子电子的技术,以应对社区的这一挑战。现在,我们有了初步数据,证明了这些问题从行为小鼠的脊柱神经元中得出了高质量的单个单位记录。明显地,当动物以潜水行为积极移动时,我们仍然能够通过尖峰分类来稳定地跟踪神经元种群。我们的初步长期结果还验证了脊髓中植入后5个月以上的慢性记录。在这一成功的推动下,我们提出了研究计划,以优化脊髓研究的这项技术。至关重要的是,我们将一群杰出的神经科学家召集在一起,与我们一起开发外科手术方法,并在不同的脊柱区域,动物模型和研究主题上测试设备。这些努力分为三个目标。我们希望这项新技术将在脊髓介导的广泛行为的背景下对单个脊柱细胞的功能进行新的观点(不同的运动速度,停止,反射撤回,伸手可及,握住,握住,排尿等)。这将使神经科学家能够将脊柱细胞类型的发达遗传和发育表征连接到电路。了解神经系统的其他部位如何与脊髓相互作用。从转化的角度来看,这为通过长期监测更好地理解脊髓损伤和疾病的病因和进展提供了机会。打开治疗脊髓损伤,中风,运动障碍和运动神经元疾病的脊柱内界面的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lan Luan其他文献
Lan Luan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lan Luan', 18)}}的其他基金
Admin Supp for Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模式映射的管理补充,以破译微梗塞对神经血管的影响
- 批准号:
10166211 - 财政年份:2020
- 资助金额:
$ 163.27万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10556319 - 财政年份:2019
- 资助金额:
$ 163.27万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
9762529 - 财政年份:2019
- 资助金额:
$ 163.27万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10542275 - 财政年份:2019
- 资助金额:
$ 163.27万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10076240 - 财政年份:2019
- 资助金额:
$ 163.27万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10786315 - 财政年份:2019
- 资助金额:
$ 163.27万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10162677 - 财政年份:2019
- 资助金额:
$ 163.27万 - 项目类别:
Longitudinal multimodal mapping to decipher the neurovascular impact of microinfarcts
纵向多模态映射破译微梗塞对神经血管的影响
- 批准号:
10317128 - 财政年份:2019
- 资助金额:
$ 163.27万 - 项目类别:
Nanoelectronic enabled chronic quantification of neurovascular coupling
纳米电子技术实现了神经血管耦合的长期定量
- 批准号:
10322174 - 财政年份:2018
- 资助金额:
$ 163.27万 - 项目类别:
Nanoelectronic enabled chronic quantification of neurovascular coupling
纳米电子技术实现了神经血管耦合的长期定量
- 批准号:
10115788 - 财政年份:2018
- 资助金额:
$ 163.27万 - 项目类别:
相似国自然基金
构建环状RNA调控肝癌干细胞干性维持的实验动物模型及机制研究
- 批准号:32070533
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
大鼠创伤性颞下颌关节强直实验动物模型的构建及发生机制研究
- 批准号:81970954
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
髌骨脱位后股骨滑车发育不良的实验动物模型研究
- 批准号:81873983
- 批准年份:2018
- 资助金额:75.0 万元
- 项目类别:面上项目
舒张性心衰(HFpEF)的动物模型:机理研究和实验治疗
- 批准号:81770265
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
基于神经中央软骨生长调控的早发性脊柱侧弯矫正模式的动物实验研究
- 批准号:81772422
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Defining the Role of Enteric Nervous System Dysfunction in Gastrointestinal Motor and Sensory Abnormalities in Down Syndrome
确定肠神经系统功能障碍在唐氏综合症胃肠运动和感觉异常中的作用
- 批准号:
10655819 - 财政年份:2023
- 资助金额:
$ 163.27万 - 项目类别:
Unravelling highly pathogenic influenza virus emergence
揭开高致病性流感病毒出现的谜团
- 批准号:
10718091 - 财政年份:2023
- 资助金额:
$ 163.27万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 163.27万 - 项目类别:
Core 1: Animal Models, Pathology and Tissue
核心 1:动物模型、病理学和组织
- 批准号:
10713715 - 财政年份:2023
- 资助金额:
$ 163.27万 - 项目类别:
Facility Management, Maintenance and Operations (FMMO) Core
设施管理、维护和运营 (FMMO) 核心
- 批准号:
10793864 - 财政年份:2023
- 资助金额:
$ 163.27万 - 项目类别: