The Integrated Stress Response in Human Islets During Early T1D
早期 T1D 期间人体胰岛的综合应激反应
基本信息
- 批准号:10592566
- 负责人:
- 金额:$ 40.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAreaArtificial IntelligenceAutoimmunityBeta CellBiologicalBiological MarkersCell SurvivalCell physiologyCellular StressClinicalCollaborationsCommunitiesCommunity NetworksComputer softwareDataData SetDefectDevelopmentDevelopment PlansExperimental DesignsFeedbackGenerationsGrantHumanImmunologicsIndividualInflammationIngestionInsulin-Dependent Diabetes MellitusKnowledgeLeadLearningMachine LearningMeasurementMessenger RNAMetadataMethodsModelingMolecularMolecular ProfilingMonitorMultiomic DataOntologyPathogenesisPathway interactionsPhysicsProductionProteinsProteomicsPubMedPublicationsPublishingReadinessResearchResearch DesignResourcesRiskSample SizeScienceSignal PathwayStandardizationStressTechnologyTensorFlowTestingTractionTranslatingbasebiological adaptation to stressbiomarker discoverybiomarker panelbiomarker validationclassical conditioningcomputerized data processingdata repositoryfeature extractionheterogenous dataimprovedinsulin dependent diabetes mellitus onsetisletlearning communitylipidomicsmachine learning methodmachine learning modelminimally invasivemultidisciplinarymultiple omicsneoantigensnovelparent grantparent projectphrasespredictive modelingrapid growthrepositoryresponsesoftware developmentstress granuletrend
项目摘要
ABSTRACT
The project, Integrated Stress Response in Human Islets During Early Type 1 Diabetes (T1D), hypothesizes that
the activation of the integrated stress response and formation of stress granules is an early cellular response
initiating β cell stress in T1D that determines cell survival and can be monitored in pre- and early-T1D individuals
with minimal invasiveness. A multidisciplinary Team science approach is being taken to test this hypothesis,
collecting a large suite of heterogenous data, such as mRNA, lipidomics, proteomics and immunologic
measurements. Machine learning is being used to extract a multi-biomarker panel to aid in stratifying stress in
human islets and translating these findings to individuals at-risk for T1D and new-onset T1D. Although we are
formatting the multi-omics data for this specific machine learning task within the parent grant, the data being
generated, as well as our data collected from prior collaborations, are not generally AI/ML-ready for general
application of methods. They are however excellent candidates to be used as “flagship” datasets for AI/ML
readiness, both to test novel AI/ML approaches to tackle data pre-processing challenges and to extract molecular
signatures of T1D. These two gaps in analyses are the central themes of two aims. The first aim focuses on the
generation of AI/ML ready omics datasets that are properly annotated to address challenges in sparsity and bias,
such as imputation and batch correction. The second aim focuses AI/ML ready multi-omic datasets to enable
new studies in using machine learning to elicit biomarkers and pathway-level molecular signatures from the data
focused on standard AI/ML methods, as well as those specialized for small sample size. Dataset machine
learning model cards will be utilized to better enable to AI/ML research communities to utilize these datasets in
an efficient manner. For both aims there is a key focus on generating reusable software approaches to generate
data packages that can be directly imported into the most common AI/ML packages and released to the AI/ML
community through a variety of resources that enable feedback to continually improve and refine the AI/ML
readiness software development plan.
抽象的
该项目是早期1型糖尿病(T1D)期间人类胰岛中的综合应力反应,假设
综合应力反应的激活和应力颗粒的形成是早期的细胞反应
在T1D中启动β细胞应激,该β细胞应激决定细胞存活,可以在前和早期T1D个体中进行监测
具有最小的侵入性。正在采用多学科团队科学方法来检验这一假设,
收集大量的异源数据,例如mRNA,脂肪组学,蛋白质组学和免疫学
测量。机器学习被用于提取多生物标志物面板,以帮助对压力进行分层
人类胰岛并将这些发现转化为T1D和新发行T1D的人。虽然我们是
在父母赠款中格式化此特定机器学习任务的多摩斯数据,数据为
生成的以及我们从先前协作中收集的数据通常不准备使用AI/ML
方法的应用。但是,他们是AI/ML的“旗舰”数据集的出色候选人
准备就绪,都可以测试新型AI/ML方法,以应对预处理挑战的数据
T1D的签名。分析中的这两个差距是两个目标的中心主题。第一个目的侧重于
生成AI/ML准备就绪的OMICS数据集,这些数据集经过适当注释以应对稀疏和偏见的挑战,
例如插补和批处理。第二个目标重点是AI/ML准备就绪的多OMIC数据集以启用
从数据
专注于标准的AI/ML方法,以及专门用于小样本量的方法。数据集机
学习模型卡将用于更好地启用AI/ML研究社区
有效的方式。对于这两个目标,都有关键的重点是生成可重复使用的软件方法来生成
可以直接导入最常见的AI/ML软件包并释放到AI/ML的数据软件包
通过各种资源社区,使反馈能够不断改善和完善AI/ML
准备软件开发计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas O Metz其他文献
Protection of beta cells against pro-inflammatory cytokine stress by the GDF15-ERBB2 signaling
GDF15-ERBB2 信号传导保护 β 细胞免受促炎细胞因子应激
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Soumyadeep Sarkar;Farooq Syed;B. Webb;John T. Melchior;G. Chang;Marina A. Gritsenko;Yi;Chia;Jing Liu;Xiaoyan Yi;Yi Cui;D. Eizirik;Thomas O Metz;Marian J Rewers;C. Evans;R. Mirmira;Ernesto S. Nakayasu - 通讯作者:
Ernesto S. Nakayasu
Thomas O Metz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas O Metz', 18)}}的其他基金
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
9769745 - 财政年份:2018
- 资助金额:
$ 40.13万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10260964 - 财政年份:2018
- 资助金额:
$ 40.13万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10213202 - 财政年份:2018
- 资助金额:
$ 40.13万 - 项目类别:
Pacific Northwest Advanced Compound Identification Core
太平洋西北高级化合物鉴定核心
- 批准号:
10012251 - 财政年份:2018
- 资助金额:
$ 40.13万 - 项目类别:
Label-free polar metabolite quantification for untargeted metabolomics
用于非靶向代谢组学的无标记极性代谢物定量
- 批准号:
10396924 - 财政年份:2018
- 资助金额:
$ 40.13万 - 项目类别:
Next generation, 'Standards-Free' Metabolite Identification Pipeline
下一代“无标准”代谢物鉴定管道
- 批准号:
9433322 - 财政年份:2017
- 资助金额:
$ 40.13万 - 项目类别:
Validation of Novel Peptide/Protein Markers for Diagnosis of Type 1 Diabetes
用于诊断 1 型糖尿病的新型肽/蛋白质标记物的验证
- 批准号:
8495451 - 财政年份:2012
- 资助金额:
$ 40.13万 - 项目类别:
相似国自然基金
区域医疗一体化对基层医疗机构合理用药的影响及优化策略——基于创新扩散理论
- 批准号:72304011
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
高温与臭氧复合暴露对我国心脑血管疾病寿命损失年的区域分异影响及未来风险预估研究
- 批准号:42305191
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米结构和低压协同影响下接触线区域蒸发液体的界面作用和界面传递特性
- 批准号:52376053
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
碳边境调节机制对我国区域经济、社会和环境协调发展的影响——考虑企业所有制异质性的研究
- 批准号:72303240
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
太平洋和大西洋年代际海温模态对大湄公河次区域夏季降水变化的协同影响研究
- 批准号:42375050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 40.13万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 40.13万 - 项目类别: