RNA polymerase and oxidative stress mediate ceftriaxone resistance in Neisseria gonorrhoeae
RNA聚合酶和氧化应激介导淋病奈瑟菌头孢曲松耐药性
基本信息
- 批准号:10614613
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAntibiotic ResistanceAntibioticsAntioxidantsBar CodesCRISPR interferenceCeftriaxoneCell DeathCell WallCephalosporin ResistanceCephalosporinsCervicitisClinicalComplexDNA-Directed RNA PolymeraseData SetDatabasesDependenceDrug CombinationsElectron TransportEnzymesEthnic OriginFrightGene MutationGenesGeneticGenetic DeterminismGenetic TranscriptionGenomicsGenotypeGoalsGonorrheaGram-Negative BacteriaGrowthHealthHoloenzymesHumanIncidenceIndividualInfectionInvestigationKnock-outLaboratoriesLibrariesLocalesMeasuresMediatingMethodologyMethodsMinimum Inhibitory Concentration measurementModelingMonitorMulti-Drug ResistanceMutationNeisseria gonorrhoeaeOxidative StressPathway interactionsPelvic Inflammatory DiseasePenicillin Binding Protein 2PeptidoglycanPharmaceutical PreparationsPhenotypePoint MutationPredispositionProductionProteinsPublic Health SchoolsReactive Oxygen SpeciesReporterResearchResistanceRoleSexually Transmitted DiseasesSingle Nucleotide PolymorphismSuperbugTechnologyTestingTranscriptUnited StatesUrethritisWorkage groupbiological adaptation to stresscrosslinkdesignefflux pumpgenome wide association studygenome-wideiron metabolismknock-downloss of functionmicrobial genomemosaic variantmutantnew technologynew therapeutic targetnext generation sequencingnovelnucleaseoverexpressionpathogenresistance mechanismresistant strainresponseskillstooltranscriptome sequencingurogenital tract
项目摘要
PROJECT SUMMARY/ABSTRACT
Neisseria gonorrhoeae is a Gram negative bacterium that primarily infects the human urogenital tract. Though
once on the decline, the incidence of gonorrheal infection in the United States has almost doubled over the past
decade. There has been a simultaneous increase in the proportion of antibiotic resistant strains of N.
gonorrhoeae over this period, including strains that are resistant to the first-line antibiotic ceftriaxone. The primary
target of ceftriaxone is penicillin-binding protein 2 (PBP2), an enzyme that catalyzes the crosslinking of
peptidoglycan in the cell wall. Though most resistance is caused by mutations in PBP2, one alternative
mechanism of resistance is mediated by changes in the RNA polymerase (RNAP) complex. These mutations in
components of RNAP do not affect viability and are sufficient to confer resistance, though only in a specific
subset of clinical strains of Neisseria gonorrhoeae. In preliminary work I have found that strains that contain
these RNA polymerase complex mutations have an increase in transcripts from genes associated with
antioxidant activity by RNA sequencing (RNA-seq). In other bacterial species, antibiotic-mediated killing by
cephalosporins has been associated with the production of oxidative stress.
The goal of the proposed work is to investigate the relationship between ceftriaxone resistance and
oxidative stress in N. gonorrhoeae. RNA polymerase mutations may contribute to resistance through the
oxidative stress response. Aim 1 follows the antioxidant genes that are associated with ceftriaxone resistance
by RNA-seq and investigates the role of these target genes in ceftriaxone-mediated cell death. Aim 2
characterizes the genome-wide contributions to ceftriaxone resistance in mutant RNAP strains of N.
gonorrhoeae. This will be accomplished using CRISPR interference (CRISPRi) to identify genes that are
beneficial for or deleterious to survival in the presence of ceftriaxone. Finally, Aim 3 examines how allelic
diversity across clinical strains mediates viability and ceftriaxone resistance in the presence of RNAP mutations.
Phenotype-genotype correlations in multiple strains will be investigated simultaneously through the use of strain-
specific barcodes and microbial genome-wide association studies (GWAS). These findings will provide
mechanistic understandings for a complex antibiotic resistance phenotype, define methodological tools for the
investigation of N. gonorrhoeae genetics, and may identify novel therapeutic targets for dual treatment of N.
gonorrhoeae. Through this work, I will develop experimental and computational skills as part of my doctoral
dissertation studies in the laboratory of Yonatan Grad at the T.H. Chan School of Public Health. This research
plan will advance my ability to independently construct and test hypotheses with bacterial genomics and genetics
to reduce the health impact of antibiotic resistance.
项目摘要/摘要
淋病奈瑟氏菌是一种革兰氏阴性细菌,主要感染人类泌尿生殖道。尽管
一旦下降,美国淋病感染的发病率几乎翻了一番
十年。 N。
在此期间,淋病,包括对一线抗生素头孢曲松具有抗性的菌株。主要
头孢曲松的靶标是青霉素结合蛋白2(PBP2),这是一种催化交联的酶
肽聚糖在细胞壁中。尽管最大的阻力是由PBP2突变引起的,但一种替代
电阻机理是由RNA聚合酶(RNAP)复合物的变化介导的。这些突变中
RNAP的组成部分不会影响生存能力,并且足以赋予抵抗力,尽管仅在特定中
淋病奈瑟氏菌临床菌株的子集。在初步工作中,我发现包含的菌株
这些RNA聚合酶复合酶复合物突变的转录本与与之相关的基因的转录本增加
RNA测序(RNA-SEQ)的抗氧化活性。在其他细菌物种中,抗生素介导的杀伤
头孢菌素与氧化应激的产生有关。
拟议工作的目的是调查头孢曲松抗性与
淋病链球菌中的氧化应激。 RNA聚合酶突变可能有助于通过
氧化应激反应。 AIM 1遵循与头孢曲松抗性相关的抗氧化基因
通过RNA-Seq,研究了这些靶基因在头孢曲松介导的细胞死亡中的作用。目标2
表征了全基因组对N。
淋病。这将使用CRISPR干扰(CRISPRI)来识别是
有益于或有害在头孢曲松存在下生存。最后,AIM 3检查了等位基因
在RNAP突变存在下,临床菌株之间的多样性介导了生存能力和头孢曲松抗性。
多种菌株中的表型基因型相关性将通过菌株同时研究
特定的条形码和微生物基因组关联研究(GWAS)。这些发现将提供
对复杂抗生素抗性表型的机械理解,定义了方法学工具
研究淋病链球菌遗传学,并可能鉴定出新的治疗靶标,用于双重治疗N。
淋病。通过这项工作,我将发展实验和计算技能,作为我的博士学位的一部分
T.H. Yonatan毕业实验室的论文研究陈公共卫生学院。这项研究
计划将提高我使用细菌基因组学和遗传学独立构建和检验假设的能力
降低抗生素耐药性的健康影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Hidemitsu Fujii Rubin其他文献
Daniel Hidemitsu Fujii Rubin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Hidemitsu Fujii Rubin', 18)}}的其他基金
RNA polymerase and oxidative stress mediate ceftriaxone resistance in Neisseria gonorrhoeae
RNA聚合酶和氧化应激介导淋病奈瑟菌头孢曲松耐药性
- 批准号:
10229001 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Capsular locus deep sequencing to study Klebsiella populations
荚膜位点深度测序研究克雷伯氏菌种群
- 批准号:
10679308 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10333641 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Impact of the C. difficile small acid soluble proteins on spore physiology
艰难梭菌小酸溶蛋白对孢子生理学的影响
- 批准号:
10533031 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Impact of the C. difficile small acid soluble proteins on spore physiology
艰难梭菌小酸溶蛋白对孢子生理学的影响
- 批准号:
10677790 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10618131 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别: