RNA polymerase and oxidative stress mediate ceftriaxone resistance in Neisseria gonorrhoeae
RNA聚合酶和氧化应激介导淋病奈瑟菌头孢曲松耐药性
基本信息
- 批准号:10614613
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAntibiotic ResistanceAntibioticsAntioxidantsBar CodesCRISPR interferenceCeftriaxoneCell DeathCell WallCephalosporin ResistanceCephalosporinsCervicitisClinicalComplexDNA-Directed RNA PolymeraseData SetDatabasesDependenceDrug CombinationsElectron TransportEnzymesEthnic OriginFrightGene MutationGenesGeneticGenetic DeterminismGenetic TranscriptionGenomicsGenotypeGoalsGonorrheaGram-Negative BacteriaGrowthHealthHoloenzymesHumanIncidenceIndividualInfectionInvestigationKnock-outLaboratoriesLibrariesLocalesMeasuresMediatingMethodologyMethodsMinimum Inhibitory Concentration measurementModelingMonitorMulti-Drug ResistanceMutationNeisseria gonorrhoeaeOxidative StressPathway interactionsPelvic Inflammatory DiseasePenicillin Binding Protein 2PeptidoglycanPharmaceutical PreparationsPhenotypePoint MutationPredispositionProductionProteinsPublic Health SchoolsReactive Oxygen SpeciesReporterResearchResistanceRoleSexually Transmitted DiseasesSingle Nucleotide PolymorphismSuperbugTechnologyTestingTranscriptUnited StatesUrethritisWorkage groupbiological adaptation to stresscrosslinkdesignefflux pumpgenome wide association studygenome-wideiron metabolismknock-downloss of functionmicrobial genomemosaic variantmutantnew technologynew therapeutic targetnext generation sequencingnovelnucleaseoverexpressionpathogenresistance mechanismresistant strainresponseskillstooltranscriptome sequencingurogenital tract
项目摘要
PROJECT SUMMARY/ABSTRACT
Neisseria gonorrhoeae is a Gram negative bacterium that primarily infects the human urogenital tract. Though
once on the decline, the incidence of gonorrheal infection in the United States has almost doubled over the past
decade. There has been a simultaneous increase in the proportion of antibiotic resistant strains of N.
gonorrhoeae over this period, including strains that are resistant to the first-line antibiotic ceftriaxone. The primary
target of ceftriaxone is penicillin-binding protein 2 (PBP2), an enzyme that catalyzes the crosslinking of
peptidoglycan in the cell wall. Though most resistance is caused by mutations in PBP2, one alternative
mechanism of resistance is mediated by changes in the RNA polymerase (RNAP) complex. These mutations in
components of RNAP do not affect viability and are sufficient to confer resistance, though only in a specific
subset of clinical strains of Neisseria gonorrhoeae. In preliminary work I have found that strains that contain
these RNA polymerase complex mutations have an increase in transcripts from genes associated with
antioxidant activity by RNA sequencing (RNA-seq). In other bacterial species, antibiotic-mediated killing by
cephalosporins has been associated with the production of oxidative stress.
The goal of the proposed work is to investigate the relationship between ceftriaxone resistance and
oxidative stress in N. gonorrhoeae. RNA polymerase mutations may contribute to resistance through the
oxidative stress response. Aim 1 follows the antioxidant genes that are associated with ceftriaxone resistance
by RNA-seq and investigates the role of these target genes in ceftriaxone-mediated cell death. Aim 2
characterizes the genome-wide contributions to ceftriaxone resistance in mutant RNAP strains of N.
gonorrhoeae. This will be accomplished using CRISPR interference (CRISPRi) to identify genes that are
beneficial for or deleterious to survival in the presence of ceftriaxone. Finally, Aim 3 examines how allelic
diversity across clinical strains mediates viability and ceftriaxone resistance in the presence of RNAP mutations.
Phenotype-genotype correlations in multiple strains will be investigated simultaneously through the use of strain-
specific barcodes and microbial genome-wide association studies (GWAS). These findings will provide
mechanistic understandings for a complex antibiotic resistance phenotype, define methodological tools for the
investigation of N. gonorrhoeae genetics, and may identify novel therapeutic targets for dual treatment of N.
gonorrhoeae. Through this work, I will develop experimental and computational skills as part of my doctoral
dissertation studies in the laboratory of Yonatan Grad at the T.H. Chan School of Public Health. This research
plan will advance my ability to independently construct and test hypotheses with bacterial genomics and genetics
to reduce the health impact of antibiotic resistance.
项目概要/摘要
淋病奈瑟氏菌是一种革兰氏阴性细菌,主要感染人类泌尿生殖道。尽管
一度呈下降趋势,美国淋病感染发病率较过去几乎翻倍
十年。耐抗生素菌株的比例同时增加。
在此期间的淋病菌,包括对一线抗生素头孢曲松具有耐药性的菌株。初级
头孢曲松的靶点是青霉素结合蛋白 2 (PBP2),这是一种催化青霉素结合蛋白交联的酶。
细胞壁中的肽聚糖。尽管大多数耐药性是由 PBP2 突变引起的,但另一种选择
耐药机制是由 RNA 聚合酶 (RNAP) 复合物的变化介导的。这些突变在
RNAP 的成分不影响生存力并且足以赋予抗性,尽管仅在特定的情况下
淋病奈瑟氏菌临床菌株的子集。在初步工作中我发现含有
这些RNA聚合酶复合体突变导致与相关基因的转录物增加
通过 RNA 测序 (RNA-seq) 检测抗氧化活性。在其他细菌物种中,抗生素介导的杀伤作用是
头孢菌素与氧化应激的产生有关。
拟议工作的目标是研究头孢曲松耐药性和
淋病奈瑟菌的氧化应激。 RNA聚合酶突变可能通过以下方式导致耐药性:
氧化应激反应。目标 1 追踪与头孢曲松耐药相关的抗氧化基因
通过 RNA-seq 并研究这些靶基因在头孢曲松介导的细胞死亡中的作用。目标2
描述了 N. 突变体 RNAP 菌株中对头孢曲松耐药性的全基因组贡献。
淋病。这将通过使用 CRISPR 干扰 (CRISPRi) 来识别基因来完成。
头孢曲松存在时对生存有益或有害。最后,目标 3 检查等位基因如何
在 RNAP 突变存在的情况下,临床菌株的多样性介导活力和头孢曲松耐药性。
将通过使用菌株-基因型相关性同时研究多个菌株的表型-基因型相关性。
特定条形码和微生物全基因组关联研究(GWAS)。这些发现将提供
对复杂抗生素耐药表型的机制理解,定义方法工具
对淋病奈瑟菌遗传学的研究,可能会确定淋病奈瑟菌双重治疗的新治疗靶点。
淋病。通过这项工作,我将培养实验和计算技能,作为我博士课程的一部分
在 T.H. Yonatan Grad 实验室进行论文研究陈公共卫生学院。这项研究
计划将提高我独立构建和测试细菌基因组学和遗传学假设的能力
减少抗生素耐药性对健康的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Hidemitsu Fujii Rubin其他文献
Daniel Hidemitsu Fujii Rubin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Hidemitsu Fujii Rubin', 18)}}的其他基金
RNA polymerase and oxidative stress mediate ceftriaxone resistance in Neisseria gonorrhoeae
RNA聚合酶和氧化应激介导淋病奈瑟菌头孢曲松耐药性
- 批准号:
10229001 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Capsular locus deep sequencing to study Klebsiella populations
荚膜位点深度测序研究克雷伯氏菌种群
- 批准号:
10679308 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10333641 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Impact of the C. difficile small acid soluble proteins on spore physiology
艰难梭菌小酸溶蛋白对孢子生理学的影响
- 批准号:
10533031 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Impact of the C. difficile small acid soluble proteins on spore physiology
艰难梭菌小酸溶蛋白对孢子生理学的影响
- 批准号:
10677790 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Antibiotic tolerance: membraneless organelles and autolysin regulation
抗生素耐受:无膜细胞器和自溶素调节
- 批准号:
10618131 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别: