A molecular investigation of retinoic acid-dependent homeostatic synaptic plasticity
视黄酸依赖性稳态突触可塑性的分子研究
基本信息
- 批准号:10613502
- 负责人:
- 金额:$ 54.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AMPA ReceptorsAddressAdultAffectAnimalsBehavioralBindingBrain-Derived Neurotrophic FactorCell Adhesion MoleculesCognitive deficitsCoupledDataDevelopmentDiseaseDrug TargetingEventExcitatory SynapseExhibitsFMRPFragile X SyndromeFunctional disorderFunding OpportunitiesGeneticGenetic TranscriptionGoalsHippocampusHumanImpairmentInheritedInhibitory SynapseIntellectual functioning disabilityInvestigationLaboratoriesLearningLinkMediatingMental disordersModelingMolecularMusMutationNatureNeuronsNeurosciencesPatientsPhenotypePhysiologicalPrincipal InvestigatorProcessProteinsRNA SplicingRegulationResearchResearch Project GrantsRetinoic Acid ReceptorRoleRunawayRunningSensorySeriesShapesSignal PathwaySignal TransductionStructureSymptomsSynapsesSynaptic plasticityTestingTranslationsTretinoinVariantWorkcognitive functionenvironmental enrichment for laboratory animalsflexibilityin vivoinsightmouse modelnervous system disorderneural circuitneuropsychiatric disordernew therapeutic targetnovelpostsynapticpresynapticpreventresponseretinoic acid receptor alphasynaptic functiontooltrafficking
项目摘要
Principal Investigator: Chen, Lu
Summary
Our research focuses on uncovering the molecular mechanisms of a form of non-Hebbian synaptic
plasticity, namely homeostatic synaptic plasticity. In contrast to the self-reinforcing nature of Hebbian plasticity,
homeostatic plasticity operates under different rules as a “corrective” mechanism to prevent run-away Hebbian
plasticity. Compared to Hebbian plasticity, the molecular and cellular mechanisms underlying homeostatic
synaptic plasticity is much less understood, and their implication in neuropsychiatric disorders is largely
unexplored. Work from our labs in the past years show that retinoic acid (RA) signaling, a major signaling
pathway mediating homeostatic synaptic plasticity, is severely impaired in the absence of FMRP expression,
resulting in a lack of homeostatic plasticity in both mouse and human FXS neurons. Moreover, we demonstrate
that under a more natural, enriched environment, compromised homeostatic synaptic plasticity in adult mice
induces run away Hebbian plasticity as manifested by greatly enhanced LTP and diminished LTD. As a
behavioral consequence, animals with defective homeostatic plasticity exhibit enhanced learning but reduced
behavioral flexibility when raised in enriched environment. Together, our work establishes a link between
synaptic RA signaling, homeostatic plasticity and cognitive function, and suggests that impaired homeostatic
plasticity may contribute to cognitive deficits in FXS. The goal of the proposed research project is to gain further
understanding of the molecular and cellular mechanisms of RA-dependent homeostatic plasticity. Specifically,
we will focus on three aspects of RA signaling in the context of homeostatic synaptic plasticity: the trans-synaptic
cell adhesion molecule neurexins, the BDNF-TrkB retrograde signaling, and the functional interaction between
FMRP and RA receptor RARα. Together, results from this proposed study will identify new candidate molecular
tools for investigating in vivo function of homeostatic synaptic plasticity, and also provide insight into discovering
new drug targets for treating FXS and potentially other mental disorders.
Relevance
This project will investigate molecular mechanisms through which synaptic RA signaling regulates synaptic
strength in a homeostatic manner. Recent studies using FXS model mice and human FXS patient neurons
establish that defective RA-dependent homeostatic synaptic plasticity is a major synaptic dysfunction phenotype
associated with fragile-x syndrome. Thus, uncovering additional molecular players critically involved in
homeostatic plasticity will provide the opportunity to discover new drug targets for treating FXS and other forms
of mental illness in which circuit maladaptation due to compromised homeostatic plasticity is a major contributor
to disease symptoms.
PHS 398/2590 (Rev. 11/07) Page 1 Summary
首席研究员:陈璐
概括
我们的研究重点是揭示一种非赫布突触形式的分子机制
可塑性,即稳态突触可塑性与赫布可塑性的自我强化性质相反,
稳态可塑性在不同的规则下运作,作为防止赫布失控的“纠正”机制
与赫布可塑性相比,稳态的分子和细胞机制。
突触可塑性的了解要少得多,其对神经精神疾病的影响很大程度上还不清楚
我们实验室过去几年的工作表明,视黄酸(RA)信号是一种主要的信号传导。
介导稳态突触可塑性的通路在缺乏 FMRP 表达的情况下严重受损,
导致小鼠和人类 FXS 神经元缺乏稳态可塑性。
在更自然、更丰富的环境下,成年小鼠的稳态突触可塑性受到损害
导致赫布可塑性失控,表现为 LTP 大大增强和 LTD 减少。
行为后果,具有缺陷的稳态可塑性的动物表现出学习能力增强,但学习能力下降
在丰富的环境中培养行为灵活性,我们的工作在两者之间建立了联系。
突触 RA 信号传导、稳态可塑性和认知功能,并表明稳态受损
可塑性可能会导致 FXS 的认知缺陷。拟议研究项目的目标是获得进一步的成果。
了解 RA 依赖性稳态可塑性的分子和细胞机制。
我们将重点关注稳态突触可塑性背景下 RA 信号传导的三个方面:跨突触
细胞粘附分子神经毒素、BDNF-TrkB 逆行信号传导以及两者之间的功能相互作用
FMRP 和 RA 受体 RARα 一起,这项拟议研究的结果将确定新的候选分子。
研究体内稳态突触可塑性功能的工具,并提供深入发现
治疗 FXS 和其他潜在精神疾病的新药物靶点。
关联
该项目将研究突触 RA 信号传导调节突触的分子机制
最近使用 FXS 模型小鼠和人类 FXS 患者神经元进行的研究。
确定 RA 依赖性稳态突触可塑性缺陷是主要的突触功能障碍表型
因此,发现了与脆性x综合征相关的其他分子参与者。
稳态可塑性将为发现治疗 FXS 和其他形式的新药物靶点提供机会
因稳态可塑性受损而导致的神经回路适应不良是精神疾病的主要原因
到疾病症状。
PHS 398/2590(修订版。11/07)第 1 页摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Chen其他文献
Lu Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Chen', 18)}}的其他基金
Telomerase RNP Prisonbreaks from Phase-Separated Nuclear Body
端粒酶 RNP 从相分离核体中越狱
- 批准号:
10714880 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
A molecular investigation of retinoic acid-dependent homeostatic synaptic plasticity
视黄酸依赖性稳态突触可塑性的分子研究
- 批准号:
10841345 - 财政年份:2023
- 资助金额:
$ 54.22万 - 项目类别:
A molecular investigation of retinoic acid-dependent homeostatic synaptic plasticity
视黄酸依赖性稳态突触可塑性的分子研究
- 批准号:
10394759 - 财政年份:2020
- 资助金额:
$ 54.22万 - 项目类别:
Role of synaptotagmins and neurexin ligands in homeostatic synaptic plasticity
突触结合蛋白和神经毒素配体在稳态突触可塑性中的作用
- 批准号:
8854550 - 财政年份:2015
- 资助金额:
$ 54.22万 - 项目类别:
Developmental Pathophysiology of Synapses in a Mouse Model of Fragile X Syndrome
脆性 X 综合征小鼠模型突触的发育病理生理学
- 批准号:
9063079 - 财政年份:2014
- 资助金额:
$ 54.22万 - 项目类别:
Developmental Pathophysiology of Synapses in a Mouse Model of Fragile X Syndrome
脆性 X 综合征小鼠模型突触的发育病理生理学
- 批准号:
8921625 - 财政年份:2014
- 资助金额:
$ 54.22万 - 项目类别:
Large-Scale Molecular Interrogation of Synaptic Transmission
突触传递的大规模分子研究
- 批准号:
8300819 - 财政年份:2011
- 资助金额:
$ 54.22万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Regulation of kainate receptor expression in cone bipolar cells
视锥双极细胞中红藻氨酸受体表达的调节
- 批准号:
10367733 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Innovative therapeutic approaches to address excitotoxic CNS/neuronal damage in opioid-neuroHIV comorbidity
解决阿片类药物-神经艾滋病毒合并症中的兴奋性中枢神经系统/神经元损伤的创新治疗方法
- 批准号:
10573827 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Innovative therapeutic approaches to address excitotoxic CNS/neuronal damage in opioid-neuroHIV comorbidity
解决阿片类药物-神经艾滋病毒合并症中的兴奋性中枢神经系统/神经元损伤的创新治疗方法
- 批准号:
10684110 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Regulation of kainate receptor expression in cone bipolar cells
视锥双极细胞中红藻氨酸受体表达的调节
- 批准号:
10706972 - 财政年份:2022
- 资助金额:
$ 54.22万 - 项目类别:
Molecular Logic Sculpting Cell-Specific Contributions of Neurexin-1 at the Tripartite Synapse
分子逻辑塑造 Neurexin-1 对三联突触的细胞特异性贡献
- 批准号:
10224581 - 财政年份:2021
- 资助金额:
$ 54.22万 - 项目类别: