The immune regulation of macrophage antibody dependent cellular phagocytosis
巨噬细胞抗体依赖性细胞吞噬作用的免疫调节
基本信息
- 批准号:10613911
- 负责人:
- 金额:$ 37.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-10 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAdoptive TransferAgonistAntibodiesAntibody TherapyAutoimmune DiseasesB-LymphocytesBindingBiological AssayBone MarrowCCND1 geneCD47-SIRPαCD8B1 geneCDW52 geneCRISPR screenCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexDataData SetDependenceDisease remissionEnvironmentGene ExpressionGene Expression ProfilingGene Expression RegulationGenesGenetic TranscriptionGoalsHumanIL4 geneImmuneImmunocompetentImmunoglobulin GImmunologicsImmunosuppressionInfectionInflammatoryInterferon Type IIInterferonsInterventionKnock-outLigandsLymphocyteLymphomaMacrophageMacrophage ActivationMalignant - descriptorMalignant NeoplasmsMediatingMembraneMetabolicMethodsMicroscopyMissionModelingMolecularMonoclonal Antibody TherapyMusMyeloid CellsPathway interactionsPatientsPeripheral Blood Mononuclear CellPharmacotherapyPublic HealthReceptor SignalingRegulationRegulatory T-LymphocyteSignal TransductionSpleenStimulator of Interferon GenesSurfaceSystemSystems BiologyT-LymphocyteTestingTherapeuticTherapeutic EffectTherapeutic antibodiesTranslatingTranslationsUnited States National Institutes of HealthVariantWorkanti-CD20antibody-dependent cellular phagocytosisclinically relevantcytokinedefined contributiondesigneffective therapygene functionhuman tissuehumanized mouseimmune functionimmunoregulationimprovedin vivoin vivo Modelinhibiting antibodyinnovationmouse modelnovelpatient responseprogramsreceptorreceptor expressionreceptor functionresponserituximabscreeningtherapeutic targettissue repairtranscriptome sequencingtranscriptomicswhole genome
项目摘要
Project Summary
The killing of target cells by therapeutic antibodies is expanding the effective treatment options for a wide
range of autoimmune diseases and cancers. Mounting evidence from mouse models, humanized mouse
systems and the analysis of human tissues, indicates that macrophages are principal effectors of therapeutic
antibodies, mediating the destruction of infected, malignant and immunologically aberrant cells. Fcγ receptors
(FcR) on the surface of macrophages bind target-cell associated monoclonal IgG class antibodies (mAbs) to
initiate antibody-dependent cellular phagocytosis (ADCP) and killing of the target cell. Patient responses to
mAb therapies can vary from complete remission to minimal therapeutic effect. One poorly explored possibility
is that the variability of the ADCP response is its dependence on macrophage polarization under the influence
of immune modulation. Specifically, immunosuppressive environments alter macrophage polarization leading
to ineffective ADCP. Conversely, stimulators of interferon genes agonists (STINGa), acting through type 1
interferons (IFN-1) can dramatically potentiate ADCP and overcome immunosuppression.
Our overarching goal is to elucidate the mechanistic pathways by which macrophage activation controls FcR
function and ADCP using a systems biology approach across in vivo transcriptomics and whole genome
CRISPR screens. Identified gene-function relationships for ADCP will be validated in a novel vivo model and
translated to human macrophages and therapeutic antibodies. We hypothesize that ADCP is regulated across
major axes of macrophage polarization (M0, M1(IFNγ/LPS), M(IFN-1/STING), M2(IL4/13) and M(S)) by
gene-expression changes of yet undefined genes that modulate the A:I ratios of FcRs, their signaling machinery
and innate cellular recognition receptors. Our proposal has two innovative aims that will vastly expand
understanding of the regulation FcR-dependent ADCP. In Aim 1, we will elucidate the macrophage genes
contributing to differential FcR function and ADCP across M1, M(IFN-1/STING), M2 and M(S). This aim takes
advantage of a new CRISPR-based whole genome screening strategy to identify genes that promote and inhibit
ADCP in primary derived macrophages. Aim 2 will delineate macrophage gene regulation supporting FcR
function and ADCP in vivo. Here we will translate findings from patient data and the CRISPR screen from Aim
1 to define regulators of ADCP in vivo. Both aims will focus on clinically relevant anti-B cell (Rituximab) and
anti-T cell (CAMPATH) antibodies, and will generate findings that extend our understanding of Fc-dependent
killing mechanism of ADCP.
项目概要
治疗性抗体杀死靶细胞正在扩大有效治疗选择
来自小鼠模型、人源化小鼠的越来越多的证据。
系统和人体组织的分析表明巨噬细胞是治疗的主要效应器
抗体,介导破坏受感染的、恶性的和免疫异常的细胞。
巨噬细胞表面的 (FcR) 结合靶细胞相关的单克隆 IgG 类抗体 (mAb)
启动抗体依赖性细胞吞噬作用 (ADCP) 并杀死患者的靶细胞反应。
mAb 疗法的范围从完全缓解到最小治疗效果(一种尚未充分探索的可能性)。
ADCP 反应的可变性取决于其在影响下的巨噬细胞极化
具体来说,免疫抑制环境改变巨噬细胞极化主导。
离线无效的 ADCP,干扰素基因激动剂 (STINGa) 的刺激剂,通过 1 型起作用。
干扰素 (IFN-1) 可以显着增强 ADCP 并克服免疫抑制。
我们的首要目标是阐明巨噬细胞激活控制 FcR 的机制途径
使用跨体内转录组学和全基因组的系统生物学方法进行功能和 ADCP
CRISPR 筛选。已确定的 ADCP 基因功能关系将在新型体内模型中得到验证。
转化为人类巨噬细胞和治疗性抗体时,我们一直在努力解决 ADCP 受到跨领域监管的问题。
巨噬细胞极化的主轴(M0、M1(IFNγ/LPS)、M(IFN-1/STING)、M2(IL4/13) 和 M(S))
调节 FcR 的 A:I 比率及其信号机制的尚未定义的基因的基因表达变化
我们的提案有两个创新目标,将大大扩展。
了解 FcR 依赖性 ADCP 的调节 在目标 1 中,我们将阐明巨噬细胞基因。
有助于 M1、M(IFN-1/STING)、M2 和 M(S) 之间的差异 FcR 功能和 ADCP。
利用基于 CRISPR 的新全基因组筛选策略来识别促进和抑制的基因
初级衍生巨噬细胞中的 ADCP 目标 2 将描述支持 FcR 的巨噬细胞基因调控。
在这里,我们将翻译来自 Aim 的患者数据和 CRISPR 筛选的发现。
1 定义体内 ADCP 的调节因子。这两个目标都将集中于临床相关的抗 B 细胞(利妥昔单抗)和
抗 T 细胞 (CAMPATH) 抗体,并将产生扩展我们对 Fc 依赖性的理解的发现
ADCP的杀伤机制。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam David Hoppe其他文献
Adam David Hoppe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam David Hoppe', 18)}}的其他基金
Acquisition of a core research microscope for imaging long-term cellular signaling dynamics and optogenetic manipulation
购买核心研究显微镜,用于长期细胞信号动力学和光遗传学操作成像
- 批准号:
10797751 - 财政年份:2022
- 资助金额:
$ 37.34万 - 项目类别:
BioSystems Networks and Translational Research - Insights into Inflammation (BioSNTR-II)
BioSystems 网络和转化研究 - 炎症洞察 (BioSNTR-II)
- 批准号:
10593066 - 财政年份:2022
- 资助金额:
$ 37.34万 - 项目类别:
The immune regulation of macrophage antibody dependent cellular phagocytosis
巨噬细胞抗体依赖性细胞吞噬作用的免疫调节
- 批准号:
10397134 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
The immune regulation of macrophage antibody dependent cellular phagocytosis
巨噬细胞抗体依赖性细胞吞噬作用的免疫调节
- 批准号:
10213585 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
相似海外基金
The immune regulation of macrophage antibody dependent cellular phagocytosis
巨噬细胞抗体依赖性细胞吞噬作用的免疫调节
- 批准号:
10397134 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
The immune regulation of macrophage antibody dependent cellular phagocytosis
巨噬细胞抗体依赖性细胞吞噬作用的免疫调节
- 批准号:
10213585 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
Gelsolin modulation of airway hyperresponsiveness and inflammation
凝溶胶蛋白调节气道高反应性和炎症
- 批准号:
10463552 - 财政年份:2018
- 资助金额:
$ 37.34万 - 项目类别:
Gelsolin modulation of airway hyperresponsiveness and inflammation
凝溶胶蛋白调节气道高反应性和炎症
- 批准号:
10208940 - 财政年份:2018
- 资助金额:
$ 37.34万 - 项目类别:
Gelsolin modulation of airway hyperresponsiveness and inflammation
凝溶胶蛋白调节气道高反应性和炎症
- 批准号:
9975893 - 财政年份:2018
- 资助金额:
$ 37.34万 - 项目类别: